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ABSTRACT
The human eye offers a fascinating window into an individual’s
health, cognitive attention, and decision making, but we lack the
ability to continually measure these parameters in the natural envi-
ronment. The challenges lie in: a) handling the complexity of con-
tinuous high-rate sensing from a camera and processing the image
stream to estimate eye parameters, and b) dealing with the wide
variability in illumination conditions in the natural environment.
This paper explores the power–robustness tradeoffs inherent in the
design of a wearable eye tracker, and proposes a novel staged ar-
chitecture that enables graceful adaptation across the spectrum of
real-world illumination. We propose CIDER, a system that oper-
ates in a highly optimized low-power mode under indoor settings
by using a fast Search-Refine controller to track the eye, but detects
when the environment switches to more challenging outdoor sun-
light and switches models to operate robustly under this condition.
Our design is holistic and tackles a) power consumption in digi-
tizing pixels, estimating pupillary parameters, and illuminating the
eye via near-infrared, b) error in estimating pupil center and pupil
dilation, and c) model training procedures that involve zero effort
from a user. We demonstrate that CIDER can estimate pupil center
with error less than two pixels (0.6�), and pupil diameter with error
of one pixel (0.22mm). Our end-to-end results show that we can
operate at power levels of roughly 7mW at a 4Hz eye tracking rate,
or roughly 32mW at rates upwards of 250Hz.
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Health
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1. INTRODUCTION
The human eye offers a fascinating window into an individual’s

personality traits, medical problems, brain abnormalities, behav-
ioral conditions, cognitive attention, and decision making. These
characteristics have made it the subject of decades of research by
experts in cognition, ophthalmology, neuroscience, epidemiology,
behavior, and psychiatry, who have not only enhanced our under-
standing of how the eye works, but also revealed new ways of diag-
nosing health concerns. For example, nearly every health condition
that affects the brain causes substantial variations in eye movement
patterns including ADHD [15], Autism [29], Williams syndrome
[30], Schizophrenia [6], Parkinsons [1, 5, 7, 31], Alzheimers dis-
ease [26], Depression [8], and others. The eye also reveals a great
deal about our current cognitive state, thereby providing surpris-
ing benefits for even healthy individuals. In the landmark book
“Thinking Fast and Slow” [20], Nobel laureate Daniel Kahneman
eloquently describes how an individual’s System 2, which is our
slow, deliberate, analytical and consciously effortful mode of rea-
soning, tires after too much cognitive effort, resulting in greater
reliance on the unreliable but less effortful System 1, leading to
poor decision making (also known as ego depletion). The effects
are wide-ranging: judges are more likely to deny parole at the end
of the day [12], clinicians have been found to prescribe unneces-
sary antibiotics [23], soldiers make poor decisions in operational
environments [17], people buy more junk food [3], consume more
alcohol and cigarettes [4, 10], and so on. How would we detect
such cognitive “fatigue?” By looking at the eye and measuring
pupil dilation.

Despite the enormous potential for advancing detection of health
states and understanding of human decision making by measuring
the eye, progress has been stymied by the lack of wearable eye
trackers that are integrated into a regular pair of eyeglasses. But
the design of a low-power wearable eye tracker is remarkably chal-
lenging from the computation, sensing, communication, and aes-
thetic design perspectives. A real-time eye tracker involves an eye-
facing imager sampling at frame rates of tens of Hz (up to 100Hz to
detect fine-grained eye movements or saccades) thereby generating
megabits of data per second and making communication to a phone
extremely power-hungry. As a reference point, the Google Glass
lasts only a few hours when streaming from its outward facing
camera, while running too hot for comfort [22]. Real-time compu-
tation on the eyeglass is also remarkably challenging, particularly
given the volume of data and complexity of the image processing
techniques. While our focus in this paper is on the computation
and power aspects, aesthetic design presents an equally significant
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challenge since the sensors need to be embedded in an unobtrusive
manner within an eyeglass frame.

Several initial efforts have been made to design low-power wear-
able eye trackers (e.g. iShadow [25], iGaze [39]), but many chal-
lenges remain. We tackle two in this work — power and robust-
ness. Power consumption is a major avenue for improvement in
eye trackers. The iGaze eye tracker consumes 1.5W, and a more
optimized eye tracker, iShadow [25] has a power budget at around
70mW. These numbers are still much higher than typical wearables
which only consume a few milliwatts of power, so there is a signif-
icant gap that we need to bridge to enable long-term operation of
eye trackers on small wearable batteries.

Another major avenue for improvement is robustness. Eye track-
ers simply do not work outdoors given the variability in outdoor
lighting conditions. More generally, achieving robust operation in
environments with different illumination conditions is extraordinar-
ily challenging and hasn’t been achieved so far by either research
prototypes or bulkier commercial products. Some eye trackers such
as iShadow and iGaze rely on visible light, but clearly this fails un-
der poorly illuminated conditions. Many commercial eye trackers
use near-infrared illumination of the eye, but these do not operate
outdoors since they are overwhelmed by ambient infrared light.

Our fundamental contribution is the design of a staged architec-
ture for computational eyeglasses that can trade off between power
and robustness to illumination conditions. The principle underlying
our architecture is well-known to systems researchers — we opti-
mize heavily for the common case but provide more power-hungry
features to deal with the more difficult but uncommon scenarios
that occur.

The common case is that a) we spend a substantial fraction of
time indoors (homes, shopping malls, etc), and b) we spend 80%
of the time fixating on points, during which time the eye moves
only a small amount (referred to as microsaccades, which are typi-
cally less than 0.4�). We optimize for this regime by using a small
amount of near-infrared illumination, a few tens of pixels sampled
per estimate, and a few dozen instructions executed per pixel to
estimate eye gaze and pupil dilation parameters. The power con-
sumption for the common case is, therefore, only about 7mW — in
contrast, iGaze [39] consumes 1.5W (three orders of magnitude dif-
ference), and iShadow [25] consumes 70mW (order of magnitude
difference).

The question, however, is how to deal with much more antago-
nistic environments involving outdoor sunlight, shadows, and spec-
ular reflection of an onboard illumination source from off the cornea.
To tackle this regime, we propose several adaptation methods, where
we sacrifice energy-efficiency and switch between the sensing and
computational blocks that we activate depending on how much noise
and variability we observe. This includes sampling more pixels to
get a better estimate of the pupil, performing more computation
on the pixels to deal with noise, and using more complex models
to estimate eye parameters. These stages of the pipeline consume
20mW, which is more than an order of magnitude higher than the
typical power consumption, but these are triggered less than 10%
of the time, therefore our overall efficiency does not increase sig-
nificantly.

One of the interesting auxiliary benefits of our staged process-
ing pipeline is that it can operate at very high frame rates during
typical operation. Our optimized pipeline can operate at rates ex-
ceeding 100 fps, which is at the the high end of tethered remote eye
trackers. This capability is particularly useful for detecting small
fine-grained saccadic movements which happen while reading or
when fatigued, providing further window into an individual’s neu-
ral activities. Our algorithm, CIDER (CIrcle Detection of Edges

with Reinforcement), is the first wearable eye tracker to achieve
such high frame rates.

Our experiments show that

• CIDER can track pupil center with accuracy of roughly 1
pixel (0.3�) and pupil dilation with accuracy of approximately
1 pixel (0.22mm) in indoor lighting conditions.

• CIDER adjusts to indoor and outdoor illumination using an
indoor-outdoor NIR detector in conjunction with different
models and hardware settings. We show that the pupil center
error increases only by a modest amount in outdoor settings
(4 pixels or 1.2�).

• We operate end-to-end at a total power budget of 7.5mW
when running at 4Hz, which is 10⇥ less than previous state-
of-art in this area [25]. Alternatively, we can achieve eye
tracking rates of upwards of 250 frames/second by scaling
power consumption up to 32mW.

2. DESIGN TRADEOFFS
Robust estimation of eye measures on a computational eyeglass

presents a number of technical issues that cut across many aspects
of design. In this section, we separate each component of the
system and identify the key robustness–power tradeoffs that they
present.
Sensing: Continuous operation of a camera is power-hungry.
The energy cost of sensing primarily arises from digitization of pix-
els — while the analog electronics of a CMOS camera has very low
power consumption (few milliwatts), digitizing hundreds of pixels
per image at high frame rate (upwards of 30fps) consumes orders of
magnitude more power, resulting in a power consumption of sev-
eral tens to hundreds of milliwatts for typical cameras.

To reduce power consumption of such a camera, we would need
to throttle the rate at which pixels are digitized. This can be done
in one of several ways, including sub-sampling the image, reducing
the resolution of the image, or acquiring fewer frames. However,
reducing power consumption in this manner can be detrimental to
dealing with variations — for example, in the presence of variable
illumination or shadows, acquiring more pixels and more frames is
better since it provides more contextual information and facilitates
more robust de-noising methods.
Computation: Once pixels are acquired from the imagers, we
need to process them to estimate eye parameters. The computa-
tional demands of continuous high-rate image processing (filtering,
feature extraction, and detection) are significant, and require CPUs
that have more resources and are more power-hungry than low-
power MCU-class processors. One way of addressing this issue
is simply to use an MCU with a higher clock rate that can meet the
processing requirements. However, as with using a more advanced
image sensor, such capability would come with a significant in-
crease in power needs. This tradeoff makes higher-end processors
generally infeasible for use with wearables.

If using a more powerful MCU is not an option, the most natu-
ral alternative is to trim the computational requirements by using a
specialized model. For example, iShadow [25] uses a neural net-
work rather than a typical image processing pipeline, which greatly
reduces the amount of computation. However, this often comes at
the cost of robustness since such a one-size-fits-all model is not al-
ways able to deal with variations in illumination conditions and still
achieve high accuracy.
Communication: Can we solve some of the computation issues
by offloading it to the phone and cloud? The challenge is dealing
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Figure 1: Design challenges. (left) Two major challenges in system design are the power consumed for digitizing pixels from the camera and
the power consumed for high-rate communication to a mobile phone. (right) Another major challenge is calibrating the system during online
operation without requiring explicit interaction with the user.

with the power-efficiency of radios at high data rates — while ra-
dios like BLE, Zigbee, and even WiFi Direct are all relatively low
power when used intermittently in a duty-cycled manner, continu-
ous transfer at 30fps from a camera requires always-on radios and
increases the power consumption to several tens or hundreds of mil-
liwatts. However, offload has the benefit of being able to leverage
vast computational resources to re-train models, adjust parameters,
and deal with noise in sensor data, so when judiciously used, it can
be effective.
Illumination: One of the key challenges in CIDER is how to
deal with the peculiarities of indoor and outdoor lighting to enable
robust estimation of eye parameters in both environments. Exist-
ing techniques rely either on natural illumination [25, 39] or ar-
tificial illumination using a near infrared light source (e.g. [34]).
Both techniques have significant advantages and drawbacks. Natu-
ral illumination has power savings since typical near-infrared LEDs
consume many tens or hundreds of milliwatts during continuous
operation. However, this technique is highly sensitive to ambient
lighting, and has poor performance when operating in low lighting
conditions such as while driving a car at night. In contrast, illu-
minating the eye via near-infrared (NIR) can provide higher signal
to noise ratio, but NIR illumination does not work outdoors since
sunlight has significant infrared content, which overwhelms the il-
lumination from the NIR LEDs. Thus, the conditions observed by
the IR camera vary significantly, and require more robust methods
to process images and extract eye parameters.
Calibrating to new users: An under-explored challenge in de-
signing eye trackers is how to deal with calibration to a new user.
The training process is cumbersome and typically performed each
time a user wears the device. This was also the case in our prior
work [25], where the neural network model is learnt via a cali-
bration procedure requiring the user to look at dots on a computer
monitor before wearing the glasses. One question that we ask is
whether we can train these systems for a new user with zero-effort
i.e. no user involvement whatsoever. Such capability can enable
us to train the system without asking the user to alter their normal
behavior. This also opens up the possibility to automatically re-
train the system when needed, thereby allowing greater flexibility
in dealing with robustness issues.

In the following section, we outline a design that provides power
efficiency while also creating robustness to variability.

3. CIDER OVERVIEW
At a high level, CIDER uses two different approaches to trade off

between robustness and power — the first is a two-stage rapid eye

tracking controller, and the second is indoor-outdoor model switch-
ing to deal with different illumination conditions and noise. Under
typical indoor illumination, CIDER relies on a “Search–Refine”
two-stage controller and a small amount of NIR illumination of
the eye to estimate eye parameters in a fast, efficient, and accurate
manner.

The search stage operates with no prior knowledge of pupil loca-
tion, and uses a neural network to obtain an estimate of pupil center
and size from a sub-sampling of pixels. The refine stage takes an
estimate from the search stage, and uses a very fast and accurate
procedure to locate and track the eye. When the refine stage loses
track of the pupil due to specular reflections or other unpredictable
variations, it reverts to the search stage to get another estimate of
the eye location. The two stages differ in terms of the amount of
sensing required (i.e. number of pixels acquired per frame from the
imager) as well as the amount of computation performed to extract
eye parameters from the pixels.

In outdoor settings, CIDER turns off NIR illumination (since
there is too much ambient infrared), switches to different camera
hardware parameters to deal with outdoor lighting, and switches the
neural network model to one that is trained for outdoor conditions.
We detect indoor vs outdoor conditions using an NIR photodiode
that tracks the level of ambient infrared light. In the outdoor mode,
CIDER does not use the refine stage and only relies on the neural
network to track the eye. We generally find that there is significant
variability, which makes it difficult for a more optimized model to
operate in a reliable manner.

Overall our pipeline achieves a graceful tradeoff between ro-
bustness and power — under typical indoor illumination, CIDER
spends most of its time in the fastest and most efficient stage while
occasionally using the neural network to provide estimates. In out-
door illumination, CIDER spends all of its time in the slower but
more robust neural network stage.

CIDER also addresses robustness issues by designing a model
training pipeline that operates with no input from the user. When-
ever the eyeglass is fully charged or has good connectivity, a block
of images can be communicated to the phone, and a new model
trained offline. The enabler is an offline image processing pipeline
that generates accurate labels of pupil center and dilation from
noisy image data (collected either indoors or outdoors), which makes
it possible to learn the neural network models with zero effort from
the user.

Finally, CIDER also improves on prior work in that we can si-
multaneously estimate pupil center and pupil dilation, thereby pro-
viding two key measures of the eye in real-time. In principle,
CIDER’s estimate of pupil center can be used to determine the
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Figure 2: The CIDER pipeline: a) search stage using a neural network to get an initial estimate of pupil location, b) refine stage to zone in
on exact pupil center and perform rapid tracking unless the pupil is missed, and c) NIR-photodiode-based detection of indoor/outdoor mode
to update neural network model.

gaze direction of the user by leveraging geometric mapping meth-
ods from the inward-facing image plane to outward-facing image
plane as done in iGaze [39].

4. CIDER DESIGN
In this section, we discuss the details of how CIDER works.

We first discuss operation in the indoor case, for which CIDER
is highly optimized, and then discuss how we handle the more vari-
able outdoor case.

4.1 Search–Refine Controller
CIDER achieves high speed, high accuracy, and low power by

using a rapid switching loop between the search and the refine
stage.
Search stage – neural network model: The search stage is an
artificial neural network (ANN) prediction model that operates over
a subsampled set of pixels, based on the design outlined in [25].
We provide a high-level overview for completeness, and refer the
interested reader to [25] for a more thorough overview. The pro-
cess involves setting up the prediction problem as a neural network
where the inputs are the pixel values obtained from the imager, and
the output is a predicted (x,y) coordinate pair. The problem is set up
as a bi-objective optimization, where one objective is to minimize
the set of pixels that need to be sampled to reduce power consump-
tion, and the second objective is to minimize loss in pupil center
prediction accuracy. This is achieved using a neural network learn-
ing algorithm together with a regularizer that penalizes models that
select more pixels. The optimization problem has two terms: a)
an error term that captures how well the algorithm predicts gaze
coordinates, and b) a penalty term that increases with the number
of pixels selected. To promote sparsity i.e. to select a small active
pixel set to sample, the algorithm uses a sparsity-inducing `1 regu-
larization function, which minimizes the number of pixels sampled.
The optimization function is solved offline using labeled training
data, and the parameters are hard-coded into the eyeglass platform
for real-time prediction of the pupil center.

The only major change to the ANN model in [25] for this work
is the output target of the model. The goal of the original iShadow
work was to predict the gaze location of the subject based on the
orientation of their eye in the image. For this work, we instead
want to identify the pupil within the eye image and report relevant
parameters - center xy-coordinate, and radius of the shape. Since

the original ANN model has several desirable properties, includ-
ing input feature reduction and good accuracy, we chose to use the
same model to estimate these parameters. The input to the neural
network is still the subsampled pixels, however it is now trained
to minimize error over three target values- center x, center y, and
radius.

Refine stage – cross-search model: The refine stage is a cross-
search model (shown in Figure 3) that leverages the estimate from
the neural network to track the center of the pupil and pupil size
with minimal sampling overhead. The first step of the cross model
is to sample one row and one column of pixels at the estimated
location provided by the neural network. There is substantial fixed
pattern noise from our camera, so we need to first remove this noise
(described in more detail in §5.2). Once the fixed pattern noise has
been removed, the pixel values are median filtered and segmented
into several regions — Sclera, Iris, Pupil, and Sclera. The segmen-
tation process convolves the pixels with a box filter to detect edges.
Since we run the same operations on a column and a row of pixels,
we have two chords corresponding to the pupil along the vertical
and horizontal axes. We assume that the pupil is a circle for sim-
plicity of computation, and then it is straightforward to compute
the center of the circle from the mid-point of the two chords.

Rapid switching between stages: Switching between the two
stages works as follows. The ANN executes once, and then hands
control over to the cross model to see if it can handle further refine-
ments without requiring the ANN. The cross model is extremely
fast, and takes a fraction of the time of the ANN, so it can execute
quickly and check if further tracking of the eye can be handled en-
tirely by using the cross model. To determine when to switch back,
the cross model performs an internal validity check to see if the
results it has obtained are consistent. Specifically, the cross model
checks if the two chords (horizontal and vertical) result in a consis-
tent solution. If there is too much error, it falls back to the ANN
model. Since the cross model is fast, any misses are quickly handed
by the ANN within a short time window, so the time window during
which we do not have an estimate of the eye parameters is tiny.

The speed at which the cross model operates means that it is not
only refining the estimate from the ANN, but is also tracking the
eye. The cross model can operate at frame rates of several hundreds
of Hz, which is much faster than the speed at which larger saccades
occur. As a result, even if the eyeball is moving, the cross model
makes small adjustments each frame, thereby tracking the eye. The
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Figure 3: The CIDER cross-search model: 1) a row and column of pixels near the pupil center are sampled, 2) values are median filtered, 3)
regions of the eye are detected using edge detection, 4) chords within the pupil are detected, 5) circle is fitted to the chords, 6) consistency
check is performed to detect hit or miss, 7) the pupil center and size are estimated.

only occasions when the cross model fails is when there are blinks,
specular reflections, shadows, or other artifacts, in which case it
switches to the neural network.

Optimizing NIR power consumption: One of the key enablers
of the rapid switching controller described above is NIR-based il-
lumination of the eye. Even though indoor lighting can vary signif-
icantly, there is virtually zero infrared content in the light emitted
by lightbulbs (FL, CFL, LED, etc). This gives us an opportunity
to use a small NIR light source to illuminate the eye, and use an
NIR-pass filter on the camera to make sure that only the NIR illu-
minated content is captured. This gives us very controlled lighting
conditions despite potential changes in the indoor lighting level.

One issue that we face is that typical NIR LEDs have high power
consumption (the one we use consumes 180mW at peak power) —
this is small compared to the overall power budget of typical eye
trackers that consume watts of power, but it is exorbitant when we
are attempting to operate at a few milliwatts of power. Thus, one
question that we faced is how to reduce this power consumption.

There are two ways to reduce NIR power consumption — one is
to duty-cycle the NIR photodiode, and the other is to reduce the op-
erating voltage of the LED. NIR duty-cycling can be done between
frames, therefore the reduction in number of pixels acquired using
the cross-search model plays a significant role in the duty-cycling
benefits. Reducing the operating voltage of the LED is effective
as well — we found that NIR LEDs operate down to about 1.15V,
and while reducing the voltage results in increased noise, there is
sufficient signal for the neural network to learn a robust mapping.
A small downside of this approach is that we lose some efficiency
since NIR LEDs are typically most efficient at the high-end of their
voltage range, however, this is balanced by the substantial power
benefits that can be obtained. The combination of duty-cycling and
low voltage operation reduces the NIR power budget by roughly
two orders of magnitude, from 180mW to less than a milliwatt.

We note that our use of NIR is very different from methods
used by commercial eye trackers. Typical eye trackers use mul-
tiple narrow NIR beams, and process the image data to locate these
NIR beams, before combining this information with an eye model.
However, this process requires several NIR LEDs, more complex
geometric methods for estimating eye parameters, and does not
generalize to outdoor settings. We operate with just two NIR LEDs,
very simple models, and our computational methods continue to
work in outdoor settings albeit at higher cost (as we describe be-
low).

4.2 Indoor-Outdoor Model Switching
A second switching mechanism in CIDER is between indoor and

outdoor modes of operation. Indoor and outdoor operation are very
different for two reasons: a) NIR illumination is useful in indoor
settings since it provides a controlled environment for eye track-
ing, but not for outdoor settings where there is too much ambient
IR, and b) camera gain parameters need to be adjusted for outdoor
settings and this requires modification of the neural network pa-
rameters.

Our idea is to track ambient IR conditions using a separate in-
frared photodiode that is built into our eyeglass (facing outward
rather than inward). We use the IR levels to switch between dif-
ferent camera parameters (gain settings), as well as different neural
networks trained for different conditions. This mechanism can be
viewed as a camera gain control mechanism that is tightly inte-
grated with the eye parameter estimation pipeline. Typical cameras
use automated gain control (AGC) to deal with lighting variations,
but a downside is that the pixel values are continually changing
depending on the gain parameters. This makes it difficult to run
a specialized computational function such as neural network, par-
ticularly when subsampling pixels to operate with as few pixels as
possible. Rather than continuous adjustments, our method can be
viewed as a discrete approach, where we have two models corre-
sponding to specific ambient IR settings, and we switch both the
hardware parameters of the camera and the model based on the ob-
served settings.

The switching process itself is extremely simple from the per-
spective of the firmware, requiring only a few MCU instructions
to sample the photodiode at regular intervals. Since lighting condi-
tions can be reasonably expected not to change with high frequency
(i.e. more than once every few seconds), this sampling can be done
as infrequently as once a second or less. If the MCU detects a
significant change in lighting conditions, altering the camera gain
parameters also only requires a small handful of instruction cycles.
Thus, the overall power and time cost of the switching process is
negligible.

This indoor–outdoor model switching can be viewed as a form
of power vs robustness adaptation. In indoor settings, we consume
more power due to NIR illumination of the eye, but save much more
power by reducing the number of pixels sampled and associated
computation. In outdoor settings, we shut off the NIR LED and
opportunistically leverage ambient IR to save power. We rely on
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Figure 4: Labeling pipeline with select stages shown

a more complex neural network model, which implies more pixels
and more computation, but gain robustness in the process.

4.3 Zero-Effort Model Training
One remaining question in our system is how to train the models

for each user. Ideally, we would want such training to be com-
pletely automated to minimize burden on the user. This problem
often goes unaddressed in existing approaches, most of which are
designed to require a period of explicit user participation in order
to generate model training data (e.g. [25]). Zero-effort training
could greatly increase the likelihood of broader applicability of our
system.

The core question in training is how to develop a robust offline
method for generating labels from noisy images collected by the
camera. The offline procedure that we use for training the neural
network is shown in Figure 4. The raw image is processed through
a median filtering stage, from which the region corresponding to
the eye is extracted. This region is further contrast-adjusted and
filtered, and segmented to extract dark regions in the image. In
good conditions, only the pupil shows up as a dark region, but we
faced two additional challenges.

First, we see specular reflection of the NIR LED from the eye,
and when the specular reflection overlaps with the pupil, the dark
region can look like a disk, or like a disk with a bite on the side. To
address this, we fill holes that we might observe in the segmented
shape using standard image-fill techniques that identify distinctive
regions of color within a larger area (the pupil) and adjust them us-
ing the surrounding pixels. Since the specular reflection is small
relative to the size of the pupil, these simple techniques work ex-
tremely well in practice. Second, in outdoor conditions, we often
see shadows caused by the sun’s position relative to the eyeglass
frame, and these shadow regions are also picked up by the segmen-
tation block. To isolate the pupil, we look for the roundest segment
to detect the pupil.

Given the target pupil location from the above image processing
pipeline, we then divide the data into train and test sets and learn
the neural network parameters. The new model is then uploaded to
the glasses.

5. CIDER SYSTEM
In this section, we describe the main components of our eyeglass

system and our implementation of CIDER, and the improvements
over other prototypes that have been designed in past work.

5.1 CIDER Platform
Our eyeglass platform has a low-power camera that is mounted

in the lower part of the frame facing the eye, as well as an NIR

NIR LEDs

Cameras

NIR Photodiode

Figure 5: Eyeglass platform

illuminator, as shown in Figure 5. We also have another outward-
facing camera, as well as other sensors, but we do not discuss them
in detail since they are not pertinent to the methods in this paper.
We use the standard optics on the image sensors, which give a 36�

field of view. The eye-facing camera has an NIR filter to capture
the illuminated eye.

Our platform is similar to iShadow [25], with three key differ-
ences. First, we mount the eye-facing camera at the bottom of the
frame rather than the top as in iShadow. The difference in how
we mount the camera has implications on the tracking accuracy, as
well as robustness to different conditions. One major considera-
tion in this decision is that people naturally tend to look down with
their eyes much more frequently than they look up. If the cam-
era is mounted in the lower position we observed that, when look-
ing down, the user’s pupil is pointed nearly directly at the camera,
making detection easier. In addition, when a person looks down
for any reason, the upper eyelid naturally lowers a little. This can
obscure the eye features when viewed from a higher vantage point
(we have observed this in practice). Note that the lower eyelid does
not noticeably raise when looking up, so the eye does not become
obscured even when viewed from a lower angle. Thus, we con-
cluded that mounting the camera on the lower portion of the frame
was a strict improvement over the upper portion.

The second major change from iShadow is that we illuminate
the eye with a pair of NIR LEDs shown in Figure 5. The place-
ment point for the LEDs was chosen after careful characterization
of what location would provide best illumination while minimizing
issues due to specular reflections. Similarly, the choice of NIR LED
was made after a rigorous measurement study involving more than
a dozen types of NIR LEDs to understand their power-illumination
profiles. The third and final difference is that we have an NIR pho-
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todiode that detects the level of ambient NIR and allows us to detect
indoor conditions vs outdoor conditions.

Our platform is very different from other prototypes such as
iGaze [39]. The iGaze device consumes more than a watt, and
uses a Raspberry Pi attached to a glasses frame with cameras and
sensors. The difference in power between our prototype and iGaze
is between two and three orders of magnitude, and virtually every
component in our system from algorithm to hardware components
is optimized to achieve the power reduction.
Microcontroller: The iShadow platform uses an MCU with an
ARM Cortex M3 core [11]. Our implementation of the platform
uses an STM32L151 microcontroller, which is manufactured by
STMicro Corporation [32] and is an implementation of the Cortex
M3 standard. The STM32L1 family emphasizes low power con-
sumption and includes a wide variety of processor sleep modes that
are useful for reducing power draw by inserting timed sleep cycles
where possible. It also includes several built-in peripherals for han-
dling common communication protocols such as USB, reducing the
firmware development burden significantly.
Image sensors: Our hardware framework is built around the
Stonyman Vision Chip produced by Centeye, Inc.[9]

The Stonyman camera has a resolution of 112x112 pixels, each
of which is characterized by a logarithmic voltage response to light-
ing conditions. These pixels have a high dynamic range, and more
importantly, allow a random-access interface which the Stonyman
provides via a register-based control scheme. Besides the extremely
low power consumption compared to off-the-shelf cameras (3mW),
the main advantage of the imager is that it allows for random ac-
cess to individual pixel values. This feature allows us to sub-select
specific pixels that we need for CIDER, and results in significant
reduction in the digitization cost.

Another important characteristic of the Stonyman imager that is
the fact that the camera gain parameters are controlled program-
matically rather than automatically (i.e. there is no automatic gain
control like in other cameras). While this could be viewed as dis-
advantage, we find the ability to control gain to be beneficial for us
in that we can adjust gain parameters and the model parameters in
tandem when triggered by the NIR photodiode.

Finally, the Stonyman camera also provides features such as a
sleep mode, during which the pixel acquisition circuitry can be
powered down. The low-power state has power consumption less
than half a microwatt since only a few control registers are running
to maintain camera state.

5.2 Handling Camera Noise
We faced several implementation challenges, particularly in how

we deal with the camera noise and identify camera gain parameters,
which we briefly list in this section
Fixed pattern noise: One of the biggest challenges that we face
in designing CIDER is dealing with low-level noise and the way
in which the noise is intertwined with the hardware circuitry of the
Stonyman camera. For example, one issue was that the fixed pattern
noise of the pixels looked different when we were reading pixels
along a horizontal line vs along a vertical line for the cross model.
We identified that this issue was related to the way in which the
pixel readout circuitry is designed on the Stonyman camera. The
pixels along each row are daisy-chained to a single readout circuit,
therefore, once we started reading out pixels from the beginning of
the row, all the pixels along that row were activated. This resulted
in varying noise along the row since the pixels at the end of the
row had higher magnitude signal and noise. This issue does not
occur when sampling pixels along a column since each only one
pixel is read from each row. To address this problem, we learned a

different fixed pattern noise mask per column and per row through
offline calibration, and we subtracted the mask from the measured
values to obtain the actual signal.
Gain settings: Another issue that we faced is that the Stonyman
camera provides four gain parameters, each of which has roughly
20 settings. This results in a huge search space (204) to determine
which is the best parameter setting for indoor and outdoor condi-
tions. The search process is largely mechanical but time-consuming
since an image has to be captured for each setting, and the values
checked to see if it is appropriate. The setting is important, how-
ever, since indoor gain values simply do not work outdoors and re-
sult in the pixel values saturating. While the settings we identified
works well under different outdoor conditions, it may be possible
to perform further fine-tuning to specific conditions and get better
results than those which we have reported.

6. EVALUATION
We first describe the datasets that we have collected and the eval-

uation metrics we use and then describe our experimental evalua-
tion.

6.1 Datasets and Ground Truth Labeling
We evaluate CIDER with four datasets that correspond to differ-

ent environments and dynamics. All data collection experiments
involving human subjects received approval from an institutional
review board.

I Indoor-Stable data (fixed pupil, fixed illumination) We
collected data from 16 users, 12 male and 4 female. Each
subject performed a video calibration routine where they looked
at a high contrast dot moving on a computer monitor for
several minutes. This gives us good coverage of eye posi-
tions, and allows us to train a good model as well as deter-
mine robustness to position of the eye. The illumination was
held constant during this period, and subjects’ pupils were
roughly 5–7 pixels wide in this illumination. We generated
approximately 2500 eye images for each user. The subjects
involved in the data collection represent a range of ethnic
groups with different eye shapes and iris colorations. We re-
fer to this dataset as indoor-stable. All subjects in the
other datasets were also in the indoor-stable dataset.

I Indoor-Variable data (variable pupil, variable illumina-
tion) We collected this data for 14 users, 10 male and 4 fe-
male. We varied the lighting conditions in five discrete levels
using a combination of different sets of ceiling lights as well
as target spotlights. The subjects pupils dilated between 5–15
pixels during this period, which gives us a fairly large range
of pupil dilations that is representative of what one would
observe in real-world settings. The screen brightness was
kept low enough to not impact dilation much. The above
computer-based calibration routine was executed for each
setting to obtain data. We refer to this dataset as indoor-
variable.

I Outdoor data (uncontrolled illumination) We collected this
data for three users, all male, under outdoor settings. The
conditions were generally bright. We obtained several min-
utes of data from each participant generally gazing at the out-
side scene under different orientations.

I Indoor-Outdoor switching data Our indoor-outdoor data
was collected for one user, who walked between indoor and
outdoor conditions repeatedly for four iterations, while spend-
ing roughly a minute in each environment. This dynamic
setting helps us evaluate whether the NIR photodiode-based
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Figure 6: Cost vs Accuracy

model switching algorithm works effectively with real scene
changes.

Ground truth labeling: All data collected above was labeled
for pupil center and pupil size using the process described in §4.3.
Once labeled, we trained the neural network to identify the pupil
center and radius of the best-fit circle approximating the pupil shape
using a standard five-fold cross-validation scheme. We averaged
the test set error over the five folds to get an average score. Pupil
center error is computed as the L2 (Euclidean) distance between
the estimate and the label, pupil size error as the difference be-
tween the estimated radius and the label. The errors were averaged
over all subjects per model size to get a final set of error estimation
accuracies over a range of neural network model sizes.

6.2 Evaluation Metrics
We use several performance metrics to evaluate our system. Since

our power numbers are specific to our platform, we provide both a
more general metric that could generalize to any platform as well
as a more specific metric for our platform given the hardware com-
ponents that we choose.
Cost metrics: We use three performance metrics to evaluate our
system.

I Sensing cost We measure sensing cost in two ways: a) the
number of pixels sub-sampled from the imager, and b) the
power consumed for sampling the pixels for the Stonyman
camera. The former measure generalizes to any camera that
can be sub-sampled, while the latter measure provides a real
measurement that includes constant overheads of switching
the camera from sleep to active mode, sampling the pixels,
and switching back to sleep mode.

I Computation cost We measure computation cost in two ways
as well: a) the number of instructions that need to be exe-
cuted for each model, and b) the power consumed for exe-
cuting instructions.

I NIR cost Similar to the above two metrics, we measure the
NIR cost in terms of active time (i.e. time for which the NIR
is turned on), as well as the power consumed for our NIR
LED with duty-cycling and voltage optimizations described
in §2.

Accuracy metrics: We measure accuracy of estimating eye pa-
rameters using two metrics

I Pupil center The accuracy in measuring pupil center is mea-
sured in pixels in the image captured by the eye-facing im-

ager. This measure gives us an idea of how far we are from
the best-case performance given the sampling granularity of
the imager. From an application perspective, the key metric
of interest is the degree error in estimating gaze. We estimate
that each pixel corresponds to roughly 0.3�, so this gives us
a mapping from pupil center error measured in pixels to gaze
error. Commercial (tethered) gaze trackers achieve errors of
roughly 0.5� [35], which is slightly less than two pixel error
on our system.

I Pupil radius Similar to pupil center, we measure pupil dila-
tion in pixels. Each pixel in in the camera’s visual field cor-
responds to roughly 0.22mm when measured on the pupil,
which is similar to the resolution of high-end gaze trackers.

6.3 CIDER Performance
As we have outlined, the search and refine stages of CIDER

are intended to maximize estimation accuracy and power efficiency
over a range of environmental parameters. Our first set of results
evaluates the performance of CIDER by comparing it against the
two stages (search and refine) independently. We use the indoor-
stable data in this evaluation, which gives us an understanding of
best case performance under limited dynamics. We compare the
following schemes in this evaluation:

1. Neural network The neural network model is learnt as de-
scribed in §4.1 — we vary � (regularization parameter) to
learn various models that have different tradeoffs between
accuracy and pixels (which translates to power). This gives
us a pareto optimal set of solutions i.e. a set of solutions that
shows the tradeoff between the two objectives.

2. Idealized cross The idealized cross method is initialized by
the pupil center estimated by our offline algorithm. The cross
model then estimates the pupil center and pupil size, and we
compare the accuracy against ground truth. Clearly, this is
an idealized scenario where the cross model should perform
very well, but it still helps us understand how well the edge
detection and parameter estimation methods work in the best
case.

3. CIDER The CIDER method is the fast switching technique.
Since the CIDER pipeline involves switching between the
ANN and cross model, we expect performance to be in-between
the above models.
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Figure 7: Aggregate power vs accuracy

Sensing, computation and NIR cost: Figure 6a shows the curve
of sensing cost (in number of pixels sampled) against pupil center
estimation error (in number of pixels). The curve is obtained by
tuning the neural network regularization parameter, which allows
for the generation of a number of network sizes with varying power
needs and corresponding accuracy. The result clearly shows that
there is a significant gap between any pareto optimal solution that
can be obtained for the neural network vs the solution provided by
the idealized cross model. CIDER operates between the two but
closer to the idealized cross model. This can be explained by the
fact that the neural network is triggered only about 10-15% of the
time whereas the cross model operates the remaining 85-90% of
the time.

The performance difference in terms of computation cost is sub-
stantial as well, in fact, even more than in the case of sensing (Fig-
ure 6b). The neural network computation is much more involved
than the cross model, so there are significantly more operations per
pixel. In addition, since the cross model requires fewer pixels, the
number of times the computation needs to be performed is also
much lower. Thus, the number of instructions that need to be com-
puted for the cross model is orders of magnitude lower than for the
neural network.

Finally, the time spent with the NIR LED on is also substantially
lower for the idealized cross and CIDER models (Figure 6c). Since
the cross model needs very little time to sense, the NIR LED needs
to be turned on for a minuscule amount of time for each frame.

Energy savings: We now look at how the benefits in sensing,
computation and NIR translate into energy savings on our platform.
We measure the average power over a 10 second window of oper-
ation using a DAQ running at a 10 kHz sampling rate. To measure
power consumption for all three models, we fix the pixel capture +
predict rate of the system to 4 Hz by inserting MCU sleep periods
as needed. The 4Hz rate is chosen to enable us to measure a suffi-
ciently large range of neural network model sizes to plot the pareto
optimal graph.

Figure 7 shows the aggregate power consumption of CIDER and
compares against the two other baselines. We see similar trends
as we saw earlier in that CIDER operates in between the idealized
cross and ANN model with roughly a 3⇥ reduction (compared to
neural network models that have low error). The overall power
budget for CIDER is roughly 7mW, which is a huge improvement
over state-of-art (order of magnitude less power consumption than
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Figure 8: Aggregate power vs eye tracking rate (log scale)

[25]), and a substantial achievement considering that the system is
operating a camera, estimation algorithm, and NIR LED.

One curious feature of the graph is that the baseline for all schemes
is shifted by about 6mW. The baseline shift corresponds to constant
overheads incurred by our platform, and for configuring various pa-
rameters for the camera upon wakeup and shutdown. We suspect
that there are various sources of power leakage that contribute sig-
nificantly to the baseline, but we have not yet been able to fully
debug these issues. Looking forward, we expect that some of this
constant overhead can be eliminated with a more optimized com-
putational block such as an FPGA rather than a general-purpose
MCU.
Power vs tracking rate: Another benefit of CIDER is that it can
achieve high tracking rates. We plot the power vs pupil tracking
rate in Figure 8, which shows the total system power consumed as
the tracking rate is varied. To generate this graph, we used the same
model as was used for the measurements in Table 1, and inserted
sleep periods of variable length between each single execution of
the CIDER pipeline. The measurements were again taken using a
DAQ sampling at 10kHz.

Component Power (4 Hz) Power (278 Hz)
Camera 7.30 µW 30.8 µW
MCU (digitization) 2.67 mW 11.3 mW
MCU (computation) 4.79 mW 20.2 mW
NIR 8.24 µW 34.8 µW
Overall 7.48 mW 31.6 mW

Table 1: CIDER power breakdown

Table 1 shows a finer-grained breakdown of the power vs track-
ing rate for each component of CIDER (with a moderately large
neural network chosen to use 10% of the pixels). We give two
power measurements - one taken at the maximum eye tracking rate
possible for this model size, namely, 278 Hz, and one taken at the
4Hz rate used for the rest of the evaluation results. There are several
useful observations that can be made from this result. Interestingly,
the camera and NIR consume virtually no power compared to other
components since they are turned on for a very tiny amount of time.
The acquisition consumes a significant amount of power — this is
because digitization of the analog signal output from the camera is
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expensive. One of the major improvements that CIDER provides
is reduction of the digitization overhead. The MCU computation
is also expensive, however some of this cost could be reduced by
using a more optimized computation block such as an FPGA.
Estimation accuracy: The above discussions emphasize power
consumption, but it is instructive to look at the absolute accura-
cies that can be achieved by CIDER. The above results show that
CIDER achieves pupil center estimation accuracy within 1.2 pixels.
The neural network method cannot achieve such accurate estima-
tion even when consuming considerably more power and resources.

This result may seem surprising at first, since it is natural to ex-
pect a more power-hungry technique to have a corresponding in-
crease in performance. The main reason is that the NIR-illuminated
eye (indoors) presents very strong edges that are easier to accu-
rately identify using edge detection techniques (the cross model)
than using a neural network. So, the accuracies tend to be higher for
CIDER even though the power consumption is much lower. This is
not the case in the outdoor environment, however, hence the need
for the indoor-outdoor switching model. Thus, not only are we able
to achieve substantially reduced power consumption, we also do so
while simultaneously improving accuracy to within a small amount
of the lower bound of what is achievable with our camera.

Model Pupil Size Error (pixels)
Neural Network 0.50
CIDER 0.85

Table 2: Pupil radius estimation accuracy of CIDER

Table 2 shows the results for pupil size estimation when using
only the neural network and when using CIDER. We do not show
the entire power-accuracy profile for pupil size since we find that
even the smaller ANN models perform well in estimating the pupil
size, and there is not much difference in using a larger model. So,
we present only the mean performance across all model sizes. We
see that the pupil size estimation error is typically less than one
pixel, which suggests that both stages can do an excellent job in
estimating pupil size. Indeed, we find that the error for CIDER
may be over-estimated since we often see that the cross model’s
estimates are closer to the real value than even ground truth labels.

6.4 CIDER Under Variable Conditions
Having evaluated CIDER under relatively stable conditions, we

turn to situations that have more variability. Specifically, we look
at three cases: a) variability in the pupil dilation of the user, b) an
outdoor setting with variable illumination, and c) the user moving
from an indoor to an outdoor setting.
Variable pupil dilation: The results in §6.3 were taken under
fixed pupil dilation, so one question is whether the results are ro-
bust to varying pupil sizes. Figure 9 compares the pupil center and
pupil size estimation errors of CIDER for the 14 users in indoor-
variable, all of whom are also in the indoor-stable dataset.
Figure 9a compares the pupil center prediction results for fixed and
variable illumination conditions, each as an error CDF, and Fig-
ure 9b gives the same comparison for size prediction. The center
prediction accuracy under varying pixel sizes is marginally worse
than the accuracy under fixed pixel sizes, but the difference is not
significant. For the size prediction task, CIDER actually generated
slightly better estimates on the variable pupil size dataset. This
seems counter-intuitive at first, however, in the indoor-variable
dataset, the pupil size is generally larger than in indoor-stable,
as the lighting conditions were darker for most of the experiment.
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Figure 9: Performance comparison - fixed and variable pupil size

This makes accurate detection of the size slightly easier for both
the ANN and the cross model. Overall, we see that performance of
CIDER is robust to variation in pupil size.

Outdoor dataset: The outdoor scenario represents another high
variability situation for CIDER. The cross model does not work in
this situation, so the system relies primarily on the neural network
that is trained for outdoor settings. We find that the accuracy with
CIDER under outdoor settings is roughly 4 pixels (for moderately
sized ANNs). The results are worse than accuracy in indoor set-
tings, but not far off. In fact, the accuracy that we obtain in outdoor
settings is better than the results that were obtained in [25] under
indoor settings. One of the main reasons for the performance dif-
ference is the vastly improved labeling pipeline that we have devel-
oped, which allows us to label noisy data quite well.

We get about 1 pixel pupil dilation error, but we find that that this
is an over-estimate of the real error for reasons described above.
There is about a 1 pixel offset between the radius estimated by the
offline labeling algorithm (which performs filtering), and by the
cross model. For transparency, we have reported the error as ob-
served, but we think the error is about one pixel smaller than that
reported.

Indoor-Outdoor switching: We now look at a situation where
a user is moving between an indoor and outdoor environment, and
show how well our IR photodiode-based model switching performs.
Figure 10 shows the error distribution during the indoor segments
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Figure 10: Indoor-Outdoor switching

vs outdoor segments. This is shown as a box plot, where the three
lines in the box corresponds to the quartiles (25 percentile, median,
and 75 percentile), the whiskers correspond to the max and min,
and the dot is the mean. We truncate the max error whisker for the
outdoor case since there are some cases where CIDER returns more
than 10 pixel error.

We also verified from the traces that the NIR-based switching
works effectively, and switches models between the indoor and out-
door modes whenever the user changes environments. As observed
in §4.2, the instruction cycle and power cost of the detection and
switching process itself is negligible. The error distribution of the
predictions is higher for the outdoor case, but it is still relatively
low with a mean of less than three pixels. The error when indoors
is lower with a mean of less than two pixels.

6.5 CIDER High-Speed Eye Tracking
One of the major benefits of CIDER is the eye tracking speeds

that it can achieve. High-speed eye tracking is useful for under-
standing fast saccadic movements of the eye, which is one of the
neural mechanisms for maintaining visibility. For example, one of
the interesting use-cases for measuring micro saccades is as a diag-
nostic test for ADHD [16], and there are other applications of such
measurements [24].

However, high speed eye tracking is also very challenging on a
wearable device. Commercial high-speed eye trackers achieve sev-
eral hundred hertz tracking rates (e.g. the Eyelink high-speed eye
tracker samples at 500Hz, and the ASL H7-HS can sample at rates
up to 360Hz). Of course, these eye trackers are also bulky, tethered
for power and connected to a computer for data storage and pro-
cessing. One interesting question is, how fast CIDER can operate
if it is not duty-cycled and is allowed to perform pupil estimation
as fast as possible?

To evaluate the maximum speed achievable by CIDER, we run
it continuously on our eyeglass without duty-cycling. We measure
the rate at which it generates pupil center measures, and find that
CIDER achieves frame rates of 250–350 Hz (depending on whether
a medium-sized or small ANN is used). These speeds are compa-
rable to the rates achieved by high-speed eye trackers. One caveat
is that CIDER is not uniformly sampling since it occasionally uses
the ANN. However, the irregularity during the use of ANN can be
mitigated by using a smaller ANN model. The power consumption
at this frame rate is several tens of milliwatts since the system is op-
erating in always-ON mode. Therefore, many of the optimizations
that we used earlier no longer work. However, we don’t anticipate
that the high-speed mode will be used continuously; rather, this

mode may be triggered when appropriate. Overall, we think that
the ability to sample at high speed has substantial implications for
a wide range of health and cognition applications.

6.6 Accuracy of Labeling
To evaluate the accuracy of the labeling scheme described in

§4.3, we hand-labeled 100 eye images from one subject’s data. For
each image, we selected an elliptical region that visually seemed
to best fit the pupil area. We then compared the pupil center and
size estimate with those provided by the automatic labeling system
for the same frames. The results are given in Table 3. Note that
for both measures, the hand-labeling and automatic labeling tech-
niques yield very similar results. The pupil size is slightly higher,
but this is most likely due to the fact that the low-resolution im-
ages do no provide as sharp of an edge as would be expected with
a higher-resolution camera. Thus, the pupil edge appears spread
over a one- to two-pixel area, and distinguishing the exact pupil
boundary within that region is difficult for a human to do visually.

Feature Mean Difference (pixels)
Pupil Center 0.853
Pupil Size 1.52

Table 3: Automatic labeling vs hand labeling of pupil

7. RELATED WORK
At a high level, the idea of trading off energy consumption against

robustness is present in a plethora of computing systems, but our
novelty lies in enabling such tradeoffs by optimizing cost of dig-
itizing pixels while robustly tracking eye parameters. We briefly
highlight related efforts that have not already been mentioned in
this paper.

Dynamic energy-aware adaptation: At a high level, our work
can also be viewed as an instance of runtime energy-aware adap-
tation. Many techniques can be used to achieve such adaptation,
including techniques such as varying application fidelity to achieve
desired battery lifetime (e.g. changing the fidelity of a speech rec-
ognizer or video playback on a mobile device) [14] and adaptive
sampling and communication that leverages spatial and temporal
structure in sensor signals [36, 13, 21], among others. Our work
is a very specialized instance of such adaptation in the context of
eye trackers, and proposes the use of two models that are optimized
to extract eye parameters at different costs (cross model and neural
network), and techniques for switching between the models based
on observed dynamics.

Eye tracking overview: Eye and gaze tracking has been a field
of study for several decades [18, 28, 38]. Until recently, gaze
tracking had mostly been applied to laboratory settings, where a
subject sits facing one or more cameras that record video of their
eyes and estimates eye parameters, often with their heads in a chin
rest so as to remain motionless.

Algorithms to compute gaze positions fall into three categories:
shape-based, appearance-based and hybrid algorithms [18]. The
shape-based approach uses features of the eye image to fit an ellipse
to the boundary between the pupil and the iris [18]. This approach
typically works best with near-infrared (NIR) illumination sources,
which make it easier to detect the pupil-iris boundary as previously
discussed [28]. The cross-search model used in CIDER falls into
this category of algorithm.
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Appearance-based gaze tracking algorithms attempt to predict
the gaze location directly from the pixels of the eye image with-
out an intermediate geometric representation of the pupil. This ap-
proach essentially treats the gaze inference problem as a regression
problem where the inputs are the pixels of the eye image and the
outputs are the vertical and horizontal components of the point of
gaze in the outward facing image plane. Due to the generality of
the gaze inference problem when formulated in this way, predic-
tions can be based on essentially any multivariate regression ap-
proach. Two prominent approaches used in the gaze tracking lit-
erature are multi-layer neural networks [2] and manifold-based re-
gression [33]. The neural-network model used in the iShadow work
[25] and adapted for CIDER falls into this category.
Mobile eye tracking devices: Recently, there has been tremen-
dous interest in mobile eye trackers that can track eye parameters
“in the wild.” Companies such as Tobii and SMI have produced
devices which have shown great promise for opening up new av-
enues of research [27, 37]. However, existing industrial-grade mo-
bile eye tracking devices are predominantly a condensed version of
a standard remote tracking system, including carefully calibrated
on-board illumination and multiple high-definition cameras. While
the engineering required to condense such a complex system to a
wearable form-factor (usually in the shape of a standard pair of eye-
glasses) is impressive, the power requirements of such systems are
inordinately large by wearables standards - the user is required to
carry a large battery pack, and even then their average run time is
less than four hours. In addition, the devices only perform video
recording and storage. Since processing the eye data often means
running computations over thousands or hundreds of thousands of
high resolution simultaneous image streams, even with a full desk-
top machine the processing can be a time-intensive task. And fi-
nally, the cost of these devices is often in the tens of thousands of
dollars, making any kind of large-scale study infeasible to all but
the most well-funded organizations.

Another notable device of relevance to our work is iGaze. The
goal of iGaze is to detect gaze fixations and determine whether the
user is looking at a networking-capable device, and if so, the user
can initiate a wireless connection to facilitate some useful exchange
of data between the iGaze platform and the device in question. The
platform itself is comprised of a head-mounted camera monitor-
ing the eye, very similar to this work, and a Raspberry Pi device
carried by the user to do image processing and gaze computation.
iGaze’s predictive error and power consumption are relatively high
compared to our work - they report average gaze error of 5� and
average power consumption in excess of 1 W, whereas our error is
below 1� and power consumption is 7mW. The high power con-
sumption is presumably due to the use of traditional computer vi-
sion algorithms for pupil identification, which incur high cost as
they require relatively high-resolution images and do not allow for
subsampling.

8. FUTURE WORK
To close, we discuss in this section some avenues of future work

that we have not addressed in this paper.
Adaptation to dynamics: While our zero-effort pupil-labeling
approach tackles the initial calibration problem, one question that
we have not addressed is how to deal with dynamics in eyeglass
positioning or the environment. For example, shifts in the posi-
tion of the glasses relative to the user’s eye would increase error in
ANN predictions. Similarly, prediction error would also increase
if the ambient infrared in outdoor settings is significantly different
from the data used in training the ANN model. To address such

dynamics, we need approaches to detect in real-time that the ex-
isting model is performing less accurately than expected, and dy-
namically adjust the model, perhaps by leveraging our zero-effort
training procedures described in this paper. We are exploring tech-
niques for dynamic re-calibration in ongoing work.
Form-factor: The form-factor of the eyeglass is a particularly
important problem to tackle for more widespread use of such de-
vices. The biggest challenge in the design is finding an unob-
trusive placement of the cameras while simultaneously achieving
good coverage of the eye to enable robust estimation of eye pa-
rameters. Even with our current prototype, there were instances
where we could not obtain complete coverage of the eye due to dif-
ferences in face shape and the limited field-of-view of the camera.
This problem is exacerbated when the camera needs to be embed-
ded in the eyeglass frame since the positioning of the camera is
closer to the eye and more sensitive to changes in placement. One
of the questions that we are currently exploring is how to embed the
cameras in the eyeglass frame so as to reduce form-factor without
sacrificing accuracy.

9. CONCLUSIONS
In summary, this paper describes a new method, CIDER, for es-

timating eye parameters on a computational eyeglass using a staged
architecture that trades off power for robustness. Our architecture
uses an optimized detector for the “common case” involving a user
being indoors and in limited-noise settings, and tremendously re-
duces the overall power consumption down to numbers that are
within the range of typical wearable devices. CIDER deals with
more noise and variable illumination settings by using more com-
putational and sensing heft to filter out noise and deal with variabil-
ity. Finally, we achieve very high frame rates, which gives us the
ability to sense fine-grained eye parameters. Most surprisingly, we
enable all of this functionally while operating on a small ARM Cor-
tex M3 micro controller. To see a video demonstration of CIDER,
visit [19].
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