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ABSTRACT

We present ViRi — an intriguing system that enables a user
to enjoy a frontal view experience even when the user is ac-
tually at a slanted viewing angle. ViRi tries to restore the
front-view effect by enhancing the normal content render-
ing process with an additional geometry correction stage.
The necessary prerequisite is effectively and accurately esti-
mating the actual viewing angle under natural viewing sit-
uations and under the constraints of the device’s computa-
tional power and limited battery deposit.

We tackle the problem with face detection and augment
the phone camera with a fisheye lens to expand its field of
view so that the device can recognize its user even the phone
is placed casually. We propose effective pre-processing tech-
niques to ensure the applicability of face detection tools onto
highly distorted fisheye images. To save energy, we leverage
information from system states, employ multiple low power
sensors to rule out unlikely viewing situations, and aggres-
sively seek additional opportunities to maximally skip the
face detection. For situations in which face detection is un-
avoidable, we design efficient prediction techniques to fur-
ther speed up the face detection. The effectiveness of the
proposed techniques have been confirmed through thorough
evaluations. We have also built a straw man application to
allow users to experience the intriguing effects of ViRi.
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(1) Slanted View

(2) ViRi Effect

Figure 1: Our fisheye camera prototype on a Galaxy
Nexus smartphone, and a comparison of the various
effects at the 60° slanted viewing angle.

1. INTRODUCTION

A human vision system ensures the best visual quality
when viewing from a frontal view, i.e., facing squarely to
the display content. People make every effort (mostly sub-
conscious) to have a frontal view, for example by adjusting
the screen or properly holding the device. In real life, how-
ever, there are plenty of situations where we end up viewing
a device’s screen from a slanted viewing angle. For example,
a person may put a mobile phone on the desk next to the
keyboard while working on a PC. When there are prompts
such as reminders or push notifications (e.g., SMS, emails,
etc.) on the phone screen, the user will be viewing them at a
slanted angle; a tablet user may not always hold the device
for viewing. She may instead rest the device on a table and
continue reading in a more relaxed posture. Additionally,
the fact that people desire displays with large viewing an-
gles is also evidence of the high likelihood of viewing screen
content at a slanted viewing angle.

Visual content is difficult to consume at a slanted viewing
angle. Even though the user may actually see the pixels of
the content clearly, recognition is difficult due to the per-
spective distortion and the smaller effective viewing area.
In the above example, the user may have to pick up the
phone to read the prompt, which leads to an unnecessary



interruption to ongoing work, especially when the prompt
is of little or no importance (e.g., spamming SMS/emails,
etc); a tablet user may have to accept lower viewing qual-
ity or change to a less relaxed posture, or as many others
do, purchase a stand for their tablet. The Microsoft Surface
actually comes with a kickstand to ensure a better viewing
experience.

In this paper, we present ViRi, an intriguing system that
enables a mobile user to enjoy a frontal view experience in
natural viewing situations. With ViRi, from no matter what
angle the user is viewing the display, she will always see the
content as if she were viewing the content squarely from the
front. Figure 1 illustrates such an effect, as well as the orig-
inal slanted view for comparison. In the above example, a
ViRi mobile phone user would not be interrupted as she can
clearly see the prompts even at a glance, and a ViRi tablet
user can continue reading from a relaxed position without
resorting to any stand to hold the device.

ViRi tries to restore the frontal view effect by augmenting
the graphics rendering pipeline with a geometry correction
module. The module counteracts the negative effects caused
by the slanted viewing angle, i.e., the perspective distortion
and reduced effective viewing area. Evidently, the neces-
sary prerequisite is an effective and accurate estimate of the
actual viewing angle under natural device usage. This is ex-
tremely difficult, as the natural usage implies that the device
may be held or placed in a nearby stand, and that the user
will not make any special signal to facilitate viewing angle
detection. In addition, this has to be achieved under the
constraints of the device’s computational power and limited
battery reserve.

Among all the sensors a mobile phone is equipped with,
only the camera, with its remote sensing capability, might
be feasible for our target scenario, i.e., sensing the user even
when the device is placed away from the user. If we can de-
tect the face and eye positions, we can estimate the viewing
angle and make corrections accordingly. However, the cur-
rent phone camera has a very limited field of view (FOV),
and is thus not very helpful because when the camera can
see the user, she is already at an almost frontal view.

We propose equipping mobile devices with a fisheye cam-
era that features an extremely large FOV. In our prototype
(see Figure 1), we augment the existing phone camera by
adding a commercial off-the-shelf fisheye lens. However, us-
ing a fisheye lens creates new challenges. First of all, the
images captured with a fisheye lens are severely distorted,
suffering from both radial distortion and perspective distor-
tion. Secondly, a large FOV can easily include light sources,
which leads to harsh lighting conditions (e.g., strong back-
light and underexposed faces) that typical face detection ap-
plications would carefully avoid. Thirdly, our target scenario
requires quick adaptation of the display to the actual viewing
angle. Hence ViRi needs to quickly detect the viewing angle
(mainly the face detection). Unfortunately, face detection is
of high computational complexity and usually takes a long
time. This implies significant power consumption and would
increase the tension caused by a limited battery charge.

We address all these challenges with ViRi. Instead of de-
veloping new face detection algorithms specifically for fish-
eye images, we properly pre-process the fisheye image and
leverage existing face detection tools. In particular, we per-
form an offline camera calibration process to obtain the cam-
era model, with which we can effectively rectify a fisheye im-

age into a planar one to fix the radial distortion. We perform
camera reorientation to fix the perspective distortion, and
adopt an auto exposure algorithm to handle harsh lighting
conditions.

To reduce energy consumption, we identify different view-
ing situations (Hand-Held and Off-the-Body) and leverage
system states (i.e., screen on/off and if there are pending
prompts), low power sensors (accelerometer, light sensor,
and proximity sensor) to rule out impossible viewing sit-
uations and maximally skip face detection in real viewing
situations. For situations in which face detection is indeed
necessary, we have developed effective prediction methods
to reduce the face detection time without compromising de-
tection accuracy. More concretely, in Hand-Held viewing
situations, we perform face detection only when the ac-
celerometer indicates a new (quasi-)stationary state after
significant device attitude changes. We have designed an
angle-based prediction scheme that extracts the Euler an-
gles between the attitudes before and after the change and
predicts the most likely face position from that in the pre-
vious attitude. In Off-the-Body viewing situations, a large
viewing angle change is usually associated with significant
posture changes. We leverage the light sensor to detect such
situations. Based on the fact that the device does not move
while the user’s head will move slightly (even if a person
may not sense the movement, the device detects it), we have
designed a motion-based prediction scheme that takes two
pictures at a short interval (say 300 ms) and predicts the
face position according to the differences between the two
images using an effective integral-image based technique.

We performed thorough evaluations of each component
technique. Our proposed preprocessing techniques boost the
face detection ratio by 21%, and angle-based prediction and
motion-based prediction achieve accuracy of 90% and 85% ,
respectively, in component evaluations where the test cases
are more stressed. In system evaluation of natural phone
usage, performance is even better. The average view angle
detection error is usually within 10 degrees. We have also
built a straw man application in which the user can provide
a picture and experience the effect after viewing angle cor-
rection at arbitrary slanted viewing angles. A small-scale
informal user study suggests that ViRi provides an appeal-
ing viewing experience, but also reveals new issues such as
smart content selection (due to the reduced effective viewing
area). Also, supporting a wide spectrum of applications re-
quires seamless integration with the graphics pipeline of the
operating system. We leave these issues for future study.

Contributions: In brief, we have made the following con-
tributions in this paper:

e We identify the slanted viewing phenomena and advocate
a consistent front-view experience; We study the feasibil-
ity of using a fisheye camera for perpetual user sensing;

e We design effective pre-processing techniques to ensure ro-
bust face detection with existing face detection tools, and
design effective angle-based and motion-based prediction
techniques to speed up the face detection task in natural
viewing situations;

e We leverage system events and low power sensors to avoid
unlikely viewing situations and further identify opportu-
nities where face detection can be skipped. We conduct
an in depth study of the light sensor, which has not been
well explored before.



2. MOTIVATION AND THE PROBLEM

2.1 Motivation

When viewing a device from a frontal view, we face the
display squarely (or at least the portion of the screen being
viewed when the screen is large). This offers the best viewing
quality because, humans have a small depression from 2.5 to
3 mm in diameter at the center of the retina known as the
yellow spot or macula, which offers the best vision resolving
power. In addition, our eyeballs and head naturally rotate
to adapt the viewing angle so that the content being viewed
will be imaged at the macula area. In fact, people strive
(mostly subconsciously) to maintain a frontal view, by for
example adjusting the screen or properly holding the device.

However, in real life, we often encounter situations where
the front-view experience is hard to maintain all the time.
We may be forced to look at the screen from a slanted view-
ing angle, as in the following common scenarios:

e People often put their phone beside the objects (e.g., lap-
top, book) they are using. When new information or
prompts are received, such as an SMS or a pushed email,
it is desirable to be able to peek at the content first before
deciding to pick up the device and respond, as the action
will interrupt their ongoing activity.

e People often read ebooks or watch videos on their devices
such as a tablet. It is very hard to keep a single viewing
posture for a long time, and thus highly desirable to con-
tinue reading comfortably in relaxed postures that may
change from time to time.

e Most mobile devices can automatically switch between
portrait and landscape display mode using the accelerom-
eter. This works effectively when the user’s view orien-
tation is upright, but will mess things up if the user is
watching horizontally such as while lying on a bed [7].

e People prefer large displays for higher productivity or bet-
ter visual effect. However, the larger display is usually
adjusted so that the center area corresponds to the eye
height of the user. This ensures a perfect front-view for
the center area, but leads to possible slanted viewing an-
gles for side areas.

e People usually place the TV opposite to the sofa. But
sometimes people may watch TV from a location other
than the sofa, say the dinner table.

The fact that people unanimously require displays with
large viewing angles also implies a high likelihood of view-
ing screen content at slanted viewing angles. Modern dis-
play technologies typically support a wide viewing angle.
For example, IPS panels can offer a viewing angle up to
178 degrees. With a wide viewing angle display, and the
proper orientation of the head and eyeballs, we are almost
ensured of receiving clearly displayed content, even at very
slanted viewing angles. Nevertheless, although it might be
clear, the slanted viewing angle results in a distorted image
and a reduced effective viewing area. This will cause an un-
comfortable viewing experience and people might find the
content is hard to interpret.

2.2 Problem Statement

Our goal is to improve the viewing experience at slanted
viewing angles by compensating for distorted images and
better utilizing the reduced effective viewing area. This will
enable users to consume display content as if they were view-

ing from the front-view, regardless of a device’s resting po-
sition. To this end, the necessary prerequisite is an accurate
estimation of the user’s viewing angle under natural phone
usage.

Wihile it is possible to ask the user to manually activate
viewing angle detection, it would hurt the user experience,
especially when both hands are occupied. Thus, it is more
desirable to perform continuous sensing of the user’s view-
ing angles. This is also a first step towards continuous, real-
time, and in-situ detection of user attention. With ViRi, sev-
eral other interesting scenarios can easily be enabled:

e Healthy posture monitoring: it could be desirable to mon-
itor the working posture of users and alert them when they
have stayed in the same posture for a long time to avoid
problems such as neck pain or myopia. This is generally a
difficult task for mobile phones without resorting to wear-
able peripherals.

e Forgotten device alarm: Alert the user to bring the de-
vice when leaving. This can be a highly desired feature,
as forgetting a mobile device can cause a great deal of
inconvenience and may raise the concern of privacy leaks.

Problem Statement: We hope to design an effective
means for a mobile device to perform continuous, real-time
and in situ detection if the user is looking at the device,
and further estimate the actual viewing angle of the user
without changing the user’s habits. We focus on solving
the problem for mobile devices because the viewing angle
detection problem for a fixed display (e.g., a Desktop PC)
is a special case. The solution needs to work in a number
of real situations such as when the device is being held by
the user or is resting nearby. It also needs to respect the
constraints of the device’s computational power and limited
battery reserve.

3. SOLUTION IDEA AND CHALLENGES

3.1 Solution idea

Design Considerations: The in situ requirement im-
plies that we cannot depend on an infrastructure aid for
the sake of user mobility. The constraint of not altering a
user’s habits implies that we cannot ask the user to have
any special gadgets (such as Google Glasses), nor make any
special signal (e.g., manual activation) to facilitate the de-
tection. Thus we have to completely rely on existing phone
sensors. Considering the possibility that the device may be
away from the body, only the microphone and camera may
be viable options. While a microphone can sense the user via
voice detection, it is not dependable as a user does not speak
all the time, nor will voice detection be able to determine a
user’s viewing direction.

The only remaining possibility is to use the camera. If
we can capture and detect a user’s face and eyes, we can
estimate the viewing angle. Camera have become perva-
sive on commodity smartphones. Advances in face detection
and increasing availability of public face detection SDKs and
web services make it practical to explore many camera-based
face-aware applications. However, existing phone cameras
usually have a rather limited field of view (FOV). Without
careful placement, it is very likely the user’s face will fall
outside of the FOV. Figure 3.1 shows an image taken by the
front camera of a Galaxy Nexus placed near the keyboard



(a) Norﬁlal View

(b) Fisheye View

Figure 2: Fisheye lens significantly expands the
FOV. Images were taken with the front camera on
a Galaxy Nexus, with a COTS fisheye lens.

while the user is sitting in front of a PC. Obviously, the user
is not captured in the image. The camera cannot be a viable
solution unless we can expand its FOV.

Leverage Fisheye Lens: Fisheye lenses can achieve ul-
tra wide FOV of 180-degrees or even wider. There are com-
modity fisheye lens accessories for mobile phones such as
Olloclip [4]. We can concatenate a fisheye lens to an exist-
ing phone camera system to expand its FOV.! The effect is
shown in Figure 3.1. The view covered by the original image
is highlighted with the rectangle. As can be seen, the view-
ing angle is greatly increased and the user is now captured
in the image. Quantitatively, the resulting FOV increases
from the original 45 and 60 degrees (horizontal and vertical
directions) to about 120 and 140 degrees, respectively, af-
ter putting on the fisheye lens. The difference in horizontal
and vertical FOVs are due to the aspect ratio of the image
Sensor.

One special merit of fisheye lens is its very large depth of
field — the distance between the nearest and farthest objects
in a scene that appear acceptably sharp in an image, due to
its extremely short focal length. Essentially, the complete
scene, near to far, is sharp. Fisheye lens can take sharp im-
ages even without focusing. This is a very favorable feature
as face detection algorithms desire sharp face images.

3.2 Challenges

A fisheye lens greatly increases the FOV and provides the
possibility of achieving our goal, but it also creates new chal-
lenges. The adoption of face detection also leads to new
issues for resource-constrained mobile devices.

Face Detection in Highly Distorted Images: Fish-
eye lenses achieve ultra wide angles of view by forgoing
straight perspective lines (rectilinear images), opting instead
for special mapping (e.g., equisolid angle) to create a wide
panoramic or hemispherical image. As a result, they pro-
duce highly distorted images with both radial distortion and
perspective distortion. A fisheye image is more distorted in
the peripheral areas than in the central area due to the view
compression. This can be clearly observed from images in
Figure 3.1, as well as Figure 3 that shows a set of fisheye

1Such a simple concatenation actually sacrifices the FOV
of the fisheye lens. We envision future mobile phones may
equip a genuine fisheye or ultra-wide FOV camera by design,
as there are many other advantages in having such a system
to be explored.

Figure 3: Example of fisheye images at different
viewing angles and distances. Left to right: view-
ing angles are 60, 45, 30, 15 and O degrees. Top to
bottom: viewing distances are 30, 50, and 70 cm.

images taken from different viewing angles and distances in
a typical office environment. As a large portion of the scene
is imaged in the peripheral areas of the resulting image, this
leads to low pixel density for the objects that appear in the
peripheral areas (see Figure 3) and becomes more obvious
when rectified into planar pictures (see Figure 8). Figure 3
also presents cases in which only a partial face may be cap-
tured, especially at large viewing angles.

In actual daily usage, the mobile device usually faces up-
wards. Due to the extra wide FOV of the fisheye lens, it is
very likely to include light sources in the view, especially in
indoor environments where the lights are mostly on the ceil-
ing. The phone camera adopts a central weighted average
exposure measurement. It can easily be fooled and yields
severely underexposed images.

Fast Detection Speed on The Device: Face detection
algorithms commonly adopt a binary pattern-classification
approach. The content of a given part of an image is first
transformed into features by matching against a series of
templates. Then a classifier trained on example faces decides
whether that particular region of the image is a face or not.
This process is repeated at all locations and scales using
a sliding window [20]. Thus, face detection time is closely
related to image size.
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Figure 4: Detection time and corresponding accu-
racy at different image sizes. The size is normalized
against the largest input, which is 1280x960.

We measured the face detection time at different input
image sizes, where an input image may contain no, one, or



multiple faces and may appear in the center or peripheral ar-
eas, on a Galaxy Nexus using Android FaceSDK. Figure 3.2
shows the results, where the x-axis is the image size ratio
normalized against the highest resolution 1280x960. From
the figure, we can see that the detection time indeed in-
creases with the image size, quadratically to the size ratio
and linearly to the area ratio. The detection time seems
content independent, as it varied little no matter whether
there was one or more faces in the image or no face at all.

However, while leading to faster detection speed, smaller
images impair the detection ratio as well. This is confirmed
by the detection rate for the same set of images shown in Fig-
ure 3.2. There is a tradeoff between face detection accuracy
and detection speed, and one cannot achieve a fast detection
speed by simply reducing the image size. It is therefore a
challenge to achieve both high detection accuracy and fast
detection speed.

Energy Consumption: As phones are usually battery
operated, we need to reduce energy consumption as much
as possible. To understand energy consumption, we mea-
sure the energy footprints for different device states that
a face detection application may undergo: standby mode
(screen off), CPU idle, previewing, image capture. and face
detection. Figure 5 shows the measurement results. The
image size for capturing and processing is 1280x960. WiFi
and Bluetooth are turned off, the screen is lit up but kept
at a minimum brightness unless otherwise explicitly stated.
The energy consumption for standby mode and for a screen
with max brightness is also measured for reference purposes.

1000+ Capture: Face detection:
800.201mA 737.45mA

800 Preview:
467.85mA

Max. Brightness: \
226.15mA

Current (mA)

Min. Brightness:
178.69mA

200 |Idle:
5.41mA

Time (s)

Figure 5: Energy consumption (measured in current
strength) at different stages during face detection.

Note that current mobile devices commonly activate a
preview state before taking a picture or recording a video.
While it is necessary to let the user frame the scene and
specify the focus point, such a preview stage can be safely
avoided for a fisheye lens because of its extremely large depth
of field, and there is no need for framing in our scenario.
Therefore, the net energy consumption mainly consists of
the power consumed by image capture and face detection,
which is around 340 mA and 270 mA (after subtracting the
power for preview, which takes about 290mA), respectively,
as shown in Figure 5.

4. VIRI SYSTEM DESIGN
4.1 ViRi Overview

ViRi augments existing phone cameras with an external
off-the-shelf fisheye lens, and relies on face detection to de-
tect the viewing angle. Instead of developing a new face
detection tool specially optimized for fisheye images, we try

to leverage existing face detection SDKs [1, 3, 5] by devel-
oping effective pre-processing techniques to convert fisheye
images into planar ones. In ViRi, a face detection module
is treated as a black box. As the user’s viewing angle on
the device may change at any time, ViRi needs to perform
continuous monitoring. This can lead to a severe waste of
scarce battery resources.

To mitigate the problem, ViRi leverages the free system
states and events, and low power sensors (accelerometer and
compass, light sensor, proximity sensor) to filter out unlikely
viewing situations and aggressively seeks further opportuni-
ties to skip face detection in real viewing situations. As
a result, viewing angle detection is performed only when
there is a significant situation change, such as a device at-
titude change, the user approaching or leaving, or a signif-
icant posture change. To further speed up face detection
and reduce energy consumption, ViRi applies various pre-
diction schemes to estimate possible face positions in the
newly captured image based on context-aware hints. Intu-
itively, if a viewing situation change is caused by a device
attitude change, then the angle between attitudes (measured
using an accelerometer and compass) can be used for pre-
diction. If it is due to a user posture change, we can predict
the face area from the differences between neighboring im-
age capture. We then use the small, predicted area of the
image for face detection.
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Figure 6: System architecture of ViRi.

4.2 ViRi Architecture and Workflow

ViRi runs as a background service on mobile devices (smart-
phone and slates), attempting to seamlessly adapt the dis-
play to the viewing angle of the user. The architecture of
ViRi is shown in Figure 6.

First, ViRi uses a context classifier that takes input from
system states, the accelerometer, light, and proximity sen-
sors to identify the interested viewing situations including
Hand-Held and Off-the-Body (e.g., on a desk), in which face
detection might be conducted. In a Hand-Held viewing sit-
uation, when the device’s attitude changes from one (quasi-
)stationary state to another, we trigger face detection and
further leverage the device attitude change angle to make a
prediction. In an Off-the-Body viewing situation, face de-
tection is triggered by significant posture changes, which are
detected using the light sensor. The motion-based predictor
is then called upon. The predicted face area is then cropped
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Figure 7: Fisheye lens model.

and fed into the distortion correction module. It further goes
through the auto exposure module to equalize the lighting.
Finally, face detection is conducted on the resulting image
using existing face/eye detection SDK.

In the following sections, we will elaborate on the proposed
techniques and present component evaluations.

5. FACE DETECTION AND VIEWING
ANGLE ESTIMATION

Due to the view compression characteristic of fisheye lens,
a face may be heavily distorted, especially when imaged in
the peripheral area. Direct application of face detection
tools developed for planar images suffers from low detec-
tion accuracy. As aforementioned, we hope to use existing
face detection tools through proper pre-processing, including
geometry distortion correction and harsh lighting handling.

5.1 Geometry Distortion Correction

Parametric Camera Model with Fisheye Lens: The
calibration of a fisheye lens has been well studied. In this
paper, we adopt a simplified version from [10]. The fish-
eye lens model is illustrated in Figure 7. Since the camera
is rotationally symmetric, an incoming light ray is uniquely
identified by the two angles § and . Let ® = (0,¢)".
Let 7 = (pu,po)” and m = (ms,my)” be the pixel coor-
dinates in the image and the ideal Cartesian coordinates in
the sensor plane, then the simplified fisheye lens model can
be described as

7= Ao F(®)

where F(®) = r()(cos p,sin )T is the transform from ray
direction @ to the ideal Cartesian coordinates, and A is the
affine transform that forms the final pixel image from the
projected image through alignment and scaling, i.e.,

A1) = S - (17 — 170)

with o being the possible misalignment between the center
of the sensor plane and the light axis of the lens, and S is
the scaling matrix that scales the size of the sensor plane to
the actual image dimension in pixels.

Different choices of r(f) lead to different camera models.
For a fisheye lens model, we use a fourth-order polynomial
r(0) = Z?:o a;0*. The calibration process then identifies
all the parameters. We envision the fisheye lens is fixed in
the device, so we perform an offline, once-for-all calibration
process using a checkerboard and obtain the intrinsic model

parameters of the fisheye lens. The procedure is an iterative
process that fixes one set of model parameters (A or F) and
optimizes the other, and vice versa.

(b) Reoriented Images

Figure 8: Fisheye images after geometry distortion
correction. Same set of images as shown in Figure3.

Radial Distortion Correction: The first pre-processing
step is to rectify a fisheye image into a planar one to correct
the radial distortion. Having learnt the parameters of the
camera model, we find the mapping between a pixel § in a
fisheye image and the corresponding pixel p’ in the recti-
fied image. The mapping is achieved by first resolving the
incoming angle for p using the fisheye camera model, and
then projecting it to another image using the pinhole model
r(0) = ftan6. Because the mapping is fixed for a given
pixel position, this process can be effectively implemented
via table lookup.

Figure 8-(a) shows the effect of radial distortion correction
for the set of images shown in Figure3. From the figures, we
can see that all the straight lines that were warped to curves
in fisheye images have become straight again.

Perspective Distortion Correction: For many cases in
which the face is in a peripheral area of the fisheye image,
the perspective distortion stretches the face heavily, which



may render the face detection templates pre-trained from
normal face images invalid. To handle this, we reorient the
camera, i.e., rotate the fisheye image to center around the
face, and achieve the effect as if the image were taken with
the camera facing straight to the face. Suppose the face
is at the incoming angle ®, we simply rotate along the Z-
axis by ¢ first and then rotate the resulting image along
the Y-axis by 0. Note that, in real applications, this would
create a parador: we hope to rotate the image to center
around the to-be-detected face position which is unknown
yet. As detailed in Section 7, we will overcome this paradox
through prediction: we predict the most likely face location
and reorient the camera to center around that.

The effect of camera reorientation is shown in Figure 8-
(b). From the figures, we can see that after camera reori-
entation, the view is centered around the face. Both radial
distortion and perspective distortion are fixed and the face
looks normal.

5.2 Harsh Lighting Handling

Due to the ultra wide FOV of the fisheye lens, light sources
are often captured by the camera. This may lead to strong
backlighting and underexposed faces, which usually needs to
be intentionally avoided in face detection applications. In
our settings, we do not alter a user’s usage habits and the
device can rest unattended. Hence we cannot manipulate
the positioning of the faces nor exclude the light sources.
The only possibility is to adjust the exposure and rely on
signal processing.

As the face itself can never be a light source, therefore,
we first overexpose by one stop (on the basis of the camera’s
center weighted light measurement results) when capturing
images. We further adopt an auto-exposure technique [18]
that better equalizes the resulting picture. In brief, it divides
the whole image into regions with different exposure zones
(borrowed from Ansel Adam’s Zone theory), and estimates
an optimal zone for every region while considering the details
in each zone and the local contrast between neighboring zone
regions. It then applies a detail-preserving S-curve based
adjustment that fuses the global curve obtained from zone
mapping with local contrast control.

5.3 Effectiveness of Pre-processing Techniques

To evaluate the effectiveness of pre-processing techniques,
we invited 5 volunteers to help with data collection. For
each volunteer, we captured 35 images from various viewing
angles (0, 15, 30, ... 60 degrees) and various viewing dis-
tances (30, 40, ..., 70 cm). The images are captured in a
discussion room with harsh lighting conditions. We plot the
face detection rates using different processing techniques in
Figure 9, where the X-axis represents different users.

From the figure, we can see the original (i.e., without pre-
processing) detection rates vary from 40% to 71%. We ap-
plied auto-exposure and distortion correction separately to
the raw image to determine their effectiveness in improving
face detection rate. We can see that applying a single pre-
processing technique already increased the detection rate for
most cases. But the improvements were sometimes minor,
such as for user 4 and 5. We then combined both techniques
and found that there was significant improvement, 21% on
average. In our implementation, we treated face detection
as a black-box, and are thus unable to tell the exact reason
for this observation. To our understanding, applying both
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Figure 9: Effectiveness of geometry correction and
the harsh lighting condition handling techniques.

techniques highly increases the probability of passing the
face detection filters.

5.4 Viewing Angle Estimation

Once we have detected the face, we next find the position
of the eyes. Most existing face SDKs provide eye positions
as a side product because they are typical feature points
in the matching templates in face detection. We then take
the middle point of the two eyes and reverse calculate the
viewing angle using the camera model. We actually build up
a mapping table during the calibration phase and perform
simple table lookup when resolving viewing angles.

6. CONTEXT SIFTING

Energy consumption of ViRi mainly consists of two parts:
the fixed overhead of image capture and the dynamic con-
sumption of face detection that is dictated by its execution
time. Thus, our strategy to save energy is two-fold: to skip
unnecessary face detection situations as much as possible,
and to reduce the face detection time if we have to.

In this section, we present context sifting that seeks to
leverage the system states and low power sensors to rule out
all situations of no interest, and to further identify opportu-
nities to safely skip both image capture and face detection.
For viewing situations that deserve new face detection, the
sifting process also provides hints for face location predic-
tion, which can speed up face detection, as will be elaborated
on in the next section.

6.1 Ruling Out Situations of No Interest

Interested Viewing Situations: In typical viewing sce-
narios, users either hold the device or put the device on a
table or stand. We refer to these two situations as Hand-
Held and Off-the-Body viewing situations hereafter for the
sake of clarity. In general, in whatever viewing situation, the
device is stationary or quasi-stationary and the user always
tries to maintain a stable relative position to the device for
a better viewing experience. There are cases in which both
the user and the device are moving (e.g., viewing while walk-
ing or on a moving bus), but these are rare cases and not
encouraged as they are harmful to eyesight.

Detection of Interested Viewing Situations: We de-
tect interested viewing situations via simple logical reason-
ing from several information sources, including system states



Situation | System state | Light sensor

| Proximity sensor | Accelerometer | Reasoning logic

screen off AND

No interest .
no pending prompts

small or zero (<20)

close (<20cm) motion OR

Hand-Held screen on

non-zero (>20)

far (>20cm) quasi-stationary AND

screen on OR

Off-the-Body pending prompts

non-zero (>20)

far (>20cm) stationary AND

Table 1: Interested normal viewing scenarios and their detections via sensors.

(screen is on, or is off but with pending prompts), IMU sen-
sor (accelerometer and compass, for motion state sensing),
light sensor (for environmental lighting), and proximity sen-
sor (closeness to body). All these information sources have
very low energy footprints.

The reasoning is presented in Table 1. We first leverage
the system states, the proximity sensor and the light sensor
to exclude some obvious non-interesting cases in which the
user is definitely not viewing the screen. For instance, when
the screen is off and there is no content pending to display,
or the device is put very close to the face/body (via the
proximity sensor), or in a pocket (via the light sensor), or
the device itself is in a motion state (via accelerometer) etc.,
all these are impossible reading situations.

When all the sensors indicate a possible viewing situation,
we then leverage the accelerometer to detect if the device is
held in a hand or is resting on a table, which corresponds to a
quasi-stationary or stationary state, respectively. Using the
accelerometer to detect motion states is a well-studied topic
[11]. In ViRi, we simply use the variance of the magnitude of
acceleration to classify the device’s motion states into three
categories: motion, quasi-stationary, and stationary.

6.2 Skipping Unnecessary Detections

In real viewing situations, a user subconsciously tries to
stabilize the relative position between her face/eyes and the
device’s screen. Even though the relative position cannot
be completely stable and there are subtle variations, such
small variations are usually compensated for by the human
visual system. Therefore, there is no need to re-estimate
the viewing angle in a stationary viewing state. When a
large change in the relative position happens, the estimation
of the new viewing angle is needed when it enters another
stationary viewing situation. Frequent adaptation to small
viewing angle changes will lead to a flickering display and
actually impair the viewing experience.

A large relative position change is usually associated with
a device attitude change or significant head /body movement
such as a posture change. The attitude change would only
happen in the Hand-Held case. It can be trivially detected
using the accelerometer and compass, which may also tell
the extent (in Euler angles) of change. For the Off-the-Body
situation, posture changes will incur significant change in the
lighting condition (seen from the device’s view). We can use
a light sensor to detect such changes, as elaborated below.

Leverage The Light Sensor: Figure 10 shows a trace

of the light sensor for over 8 hours in a working day with

normal phone use. Labels 1-4 indicate various zoomed-in

situations in the sub-figures below. In particular:

¢ When the user moves closer to or away from the device,
there is an apparent valley with gradual changes [Sub-
figure (1)]. Similar effects are observed for people walking
by at a close distance (less than 0.5 meter).

0 5000 10000 15000 20000 25000
Time (s)

120 120
100
80 et

60
40
20

Luminance (lux)
3
Luminance (lux)

1%700 11750 11800 11850 11900
Time (s)
(2) Lamp on to off
120
100
80
60
40
20

1330 1332 1334 1336 1338 1340
Time (s)

(1) Approaching/leaving

120
100
80
60
40
20

Luminance (lux)
Luminance (lux)

0
27720 27780 27840 27900 27960
Time (s)

191590 14592 14594 14596 14598 14600
Time (s)
(3) People walking
by (~1 meter away)

(4) Conference room
in a presentation

Figure 10: Lighting sensor traces observed by a de-
vice for over 8 hours in a typical working day.

¢ Turning off the luminance lamp causes a sudden drop in

light sensor readings [Sub-figure (2)].
¢ When people are walking by at a distance over 1 meter,

there is almost no impact on the sensed luminance [Sub-

figure (3)].
¢ Small fluctuations are observed in a conference room with

the projector showing some slides [Sub-figure (4)].

From the figures, we can see that the lighting conditions
are mostly stable when there is no significant state change.
Label 5 indicates the light sensor readings when the device
is put in a pocket. The readings are mostly low but not
always zero, because the light sensor resides on one end of
the phone, which accidentally captures some light when in
the pocket.

Our goal is to detect interested viewing situation changes
such as when the user approaches/moves away from the de-
vice or changes her viewing posture significantly. Due to the
various luminance conditions that the device may undergo,
any single threshold-based triggering method, using either



absolute luminance or relative luminance changes, will not
work. However, our observations show that a user’s posture
change, such as approaching/leaving, causes a continuous
and monotonous change, in contrast to a sudden change
such as turning on/off a lamp. Therefore, in our design,
we use the increasing or decreasing trend to trigger face de-
tection. The detection is simple conditioned the continuous
increase/drop in light sensor readings for at least 500 ms.
In summary, we exploit the system states and the lower
power sensors to filter out unlikely viewing situations, and
identify two possible reading situations, Hand-Held and Off-
the-Body, using the accelerometer and the light sensor. We
perform new face detection only when the viewing situation
becomes stationary again after the viewing angle changes.

7. FACE POSITION PREDICTION

The speed of face detection not only affects system energy
consumption, but also has an essential impact on the user
experience. As aforementioned in Section 3.2, the key is to
reduce the size of the image that feeds into the face detection
module, which is treated as a black-box in ViRi. This can
be achieved via prediction of the potential face area. Due
to the very different properties of Hand-Held and Off-the-
Body situations, we design different prediction schemes for
the two situations.

7.1 Angle-based Prediction: Hand-Held

If the contextual change is caused by the motion states
or attitude of the device, we may exploit the relative ori-
entation changes of the device, which can be obtained from
the IMU sensor (accelerometer and compass) readings. We
always record the orientation of the device when it enters
a quasi-stationary state. If the device is manipulated and
becomes stationary again, we calculate the relative rotation
angles (Euler angles). If there is a face detected in the previ-
ous state, we predict where the face is likely to reside using
the resulting rotation angle.

We now describe the general prediction process. We use p’
and ® to denote the pixel coordinates and the ray direction
in the lens coordinate system C' as shown in Figure 7. Then
we have p = Ao F(®) (refer to Section 5.1). Thus, given
the pixel p and ¢ (shown in Figure 7), we can calculate 0
of the ray direction ®. Suppose that the phone coordinate
system changes to C’ due to pitch, yaw, and roll. Assume
that the origin of the coordinate system does not change
(rotate around the optic center O¢ in Figure 7). The new
pixel coordinates of @ (denoted as p’) are determined by 6’
and ¢’, which are the angles between @ and the new Zo+ and
X axes, respectively. To calculate 8’ and ¢’, we measure
the Euler angles for pitch, yaw, and roll (illustrated in Figure
11) of the relative attitude change using the accelerometer
and compass. The details of the calculation are omitted here
due to space limitations. They can be found in [2].

In practice, when the user is holding the phone and view-
ing the display, it is unlikely that the phone is intentionally
yawed or rolled (relative to the user) except when changing
the device’s orientation. The Euler angles of a yaw or roll are
thus relatively small. We assume that the origin O¢ is fixed,
which may not hold in real situations. However, the rela-
tive position between the user and the device (held-in-hand)
usually does not change significantly in a short time. There-
fore, the proposed angle-based prediction can still work in
practice.

Original Pitch

7

—

Ldif.d ]

Figure 11: Illustration of Pitch, Yaw, and Roll
changes between different stationary attitudes and
their effects.

We have described the process of mapping one pixel in
the previous image to the new image. We will now discuss
how to generate the prediction window based on the face
detected in the previous image. The algorithm is illustrated
in Figure 12. We use p; and p;, to denote the left and right
eye in the previous image, respectively. First, p; and pi
are mapped to p; and P, in a new captured image. Then,
the prediction window’s size is set heuristically with width
|57 — py| and height 3 |5 — /|, where 3 considers the shape
of the face.

ﬁ,’

Figure 12: Prediction window generation based on
eye feature points mapping.

7.2 Motion-based Prediction: Off-the-Body

When the phone is put away from the body, e.g., on the
table next to the user, the accelerometer will fail to capture
the user’s movement. Recall that we use the changing trend
of the light sensor to detect any situation change. While
the omnidirectional light sensor can trigger a state change,
it cannot be exploited for prediction purposes. We have
designed a motion-based prediction method employing the
image sensor.

In such situations, the device is still, the user might be
moving, slightly or significantly, and the background gen-
erally remains stationary. This is quite common from our
user studies involving 10 volunteers. The part of the scene in
motion is most likely just the user. Therefore, we have pro-
posed a lightweight, motion-based prediction scheme, which
takes two consecutive images captured at short intervals and



performs motion detection to identify potential face areas.
One should note that motion-based prediction is inappro-
priate for when the device is hand-held as the background
is also shifting. Applying more advanced motion detection
algorithms such as those adopted in video coding systems
may solve this problem, but will certainly add greatly to
the computational costs. In contrast, we desire lightweight
algorithms that better suit mobile devices.

We have designed an integral-subtraction image-based pre-
diction scheme. Integral images are widely used to compute
rectangle features [20]. The scheme includes three steps.
First, we subtract two consecutive images in a pixel-wise
fashion and obtain a subtraction image. The parts in mo-
tion will have large values in the subtraction image whereas
the parts that are still will mostly have zero or small values.
Second, an integral image is calculated based on the sub-
traction image. Third, a sliding window traverses through
the integral subtraction image. The sum of the pixel values
falling into the window is calculated. The window corre-
sponding to the maximum value is the motion area and used
as the prediction results.

Figure 13 shows the intermediate processes of the integral-
substraction scheme. Two images are captured when the
user was in front of a laptop with the phone beside the key-
board. The interval was 300 ms. The subtraction image is
shown in Figure 13-(b). We can see that the subtraction
image successfully captures slight posture changes. An inte-
gral image (shown in Figure 13-(c)) is then generated based
on the subtraction image. The pixel at (z,y) stores the sum
of all pixels from the subtraction image whose coordinates
(z',y') satisfy 2’ < x,9" < y. We then traverse the integral
subtraction image with a sliding window [(z1,y1), (%2, y2)],
where (z1,y1) and (z2,y2) are the left top and right bottom
corners. The sum of all pixels within the window can be
computed with I(x2,y2) — I(z1,y2) — I(z2,y1) + I(x1,y1)
where I(x,y) represent the element (z,y) in the integral im-
age. The execution complexity of the two-step scheme is
proportional to the size of the image. In our implementa-
tion, the sliding window size is set to 320x320.

(a) Original (b) Subtraction(300 ms)

(c) Integral

Figure 13: Exemplar original, subtraction, and in-
tegral of the subtraction images.

7.3 Prediction Effectiveness: Benchmarks

Angle-based Prediction: We collected 80 images from
2 users, each with around 40 images, at random device at-
titudes. We recorded the accelerometer readings when the
images were taken. The maximum angle difference in our
experiments reached 60 degrees. We manually labeled the
eye positions for each image. We then randomly picked a
pair of images (each represents one quasi-stationary state)

to test the angle-based prediction scheme. The prediction
accuracy is quantified by the pixel distance between the mid-
dle point of the predicted and the actual eye locations. We
have plotted the cumulative distribution function (CDF) of
the prediction errors in Figure 14.

We can see that over 90% of all prediction errors fall below
20 pixels. In practice, the size of the face in the image is
typically larger than 60x 100 pixels when the user was within
a reasonable distance (say less than 1 meter). Thus, an
error of 20 pixels is relatively small. Moreover, Figure 14
shows the error between pairs of randomly selected images.
The actual rotation angles should be smaller in real viewing
situations due to gradual natural transition. Therefore, we
plot the prediction errors versus rotation angles in Figure 15.
We can see the error is small (< 10 pixels) when the rotation
angle is below 40 degrees. The error exceeds 20 pixels only
when the rotation angle is larger than 50 degrees, which
rarely happens in practice.

Motion-based Prediction: We evaluated our motion-
based prediction system using traces from 10 users. All
traces were collected when users were sitting in their cubicle,
using a laptop with their phone on the desk (~ 40 cm from
the camera to the user’s face). For each user, we recorded a
video clip of 10~20 seconds and then extracted frames from
the clip. The frame rate was 30 FPS. To calculate the sub-
traction image, we used two consecutive images interleaved
by 300 ms (or 10 frames). This interval was sufficient to
capture the user’s motion while short enough to avoid am-
bient light change. We collected a total of 1400 test cases.
For each prediction, we compared the predicted results with
human labeled groundtruth. The successful rates are shown
in Figure 16. The overall success rates are high. The worst
case is observed for user 3. The reason is that during the
video recording, the user’s face moved out of the FOV for a
while. In cases where the user’s face remained in the FOV
the whole time, the successful rates were all over 85%.

7.4 Prediction Failure Handling

Angle-based prediction depends on a previously detected
face position, while motion-based prediction does not. There-
fore, if there is no such face position recorded, angle-based
prediction is always skipped. In rare situations that meet
the criteria for interested viewing situations, but lack a face
in the fisheye images (e.g., the phone is put on the desk and
the user is away, with new prompts pending), we will end up
with one vain prediction and detection. Prediction may fail.
If this indeed happens, we would perform face detection over
the entire frame. We notice that this is a limitation because
of the black-box approach. Ideally, we would continuously
expand the search area from the predicted area, to avoid
repeated examination of the predicted area.

8. SYSTEM EVALUATION

8.1 Implementation

We built the ViRi engine on a Samsung Galaxy Nexus
phone running Android 4.0. The executable file size was
1.11 MB with a memory footprint of 39 MB. One issue we
faced in our implementation was the restriction imposed by
the OS in terms of camera usage: we have to turn on the
screen and enter the preview mode before we can take a
image. That is, we are forbidden to automatically take a
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Figure 14: Angle-based prediction
accuracy for different users.

photo without activating the screen and previewing. This
brings significant overhead in energy consumption.

Perspective Distortion Correction: Due to perspec-
tive distortion, the effective display, which is perpendicular
to the line connecting the eye and the screen center, has
the shape of a trapezoid, as depicted in Figure 17, where
the phone is laying on a surface and the effective display is
shown by in dashed lines. ViRi seeks to properly adjust the

w
Effective display
Eye wlll h
hcosg|—
o
2
®
=
N
Original display Eye

Figure 17: Illustration of the perspective distortion
correction process.

to-be-displayed content to generate a normal looking image
on the effective display. Obviously, the key task is to find
the actual size of the effective display. Assume the distance
between the eye and the center of the physical display is d,
which is typically set to within the range of 0.3m-1m.
Given the estimated viewing angle 6, we calculate the di-
mensions of the effective display as follows: let h and w be
the height and the width of the physical display. Evidently,
the length of the bottom edge of the effective display is w,
and we only need to find the length of the top edge (w’)
and the height (h') of the effective display. According to the
Sine Theorem, h' is calculated by
, sin v
ho=h- sin(m — 6 — )
where « is the angle shown in Figure 17. Note that o can
simply be derived once d and 6 are fixed. After obtaining
h', w’ can be calculated by

' w d-sinf —h/2+h' - cosf
d-sinf+ h/2
as illustrated in the right part of Figure 17. Once A’ and w’

are calculated, we can manipulate the to-be-shown content
and fit it to the effective display.

8.2 System Evaluation

We have already evaluated component technologies. In
this section, we evaluate the overall system performance, in-
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Figure 15: Angle prediction er-
ror vs actual rotation angles.
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Figure 16: Motion-based predic-
tion rates for 10 users.

cluding end-to-end face detection accuracy, detection speed,
and resource consumption.

Methodology: We separated the two common viewing
scenarios and evaluated them separately. We invited differ-
ent users and recorded their behavior via a camcorder, from
which we manually identified the viewing angle changes and
compared them with our system detection.

8.2.1 Effectiveness of Prediction in Face Detection

Hand-Held Situation: We invited five volunteers to try
our prototype phone in typical usage scenarios, e.g., ebook
reading, web browsing, and movie playback. The accelerom-
eter triggered image capture when there was a transition
between two quasi-stationary states as described in Section
7.1. The accelerometer readings were continuously recorded.
The data collection for each volunteer lasted for tens of min-
utes with 30~60 images captured. For each state transition,
we applied angle-based prediction. The predicted face area
was cropped out and fed to the face detection module. If a
face was detected, we counted a successful hit. Otherwise,
we performed face detection using the whole image. We
present the prediction success rates in Figure 18.

We can see the overall prediction success rates varied from
0.78 to 1.00. The right bar in each cluster in Figure 18 shows
the detection rate for the whole image without prediction.
This accounts for the limitation of the face detection SDK.
Note that the actual prediction success rates were higher
than those shown in Figure 18, because a prediction should
be concluded is a failure only when the face was not detected
in the cropped image but successfully detected in the whole
image. Thus, taking volunteer 4 as an example, the actual
prediction success rate was 78/92 ~ 0.85. One may notice
that the results shown in Figure 18 look much better than
those in Figure 9. The reason is that the data collections
for Figure 18 were under normal reading conditions, whereas
those for Figure 9 were under more stressful conditions, e.g.,
with harsher lighting.

Recall that the goal of prediction is to reduce the pro-
cessing time by feeding the face detection black box with
a small image. The size of a full image in our system is
7681024 pixels. We observed the cropped image sizes var-
ied from 0.16~0.21 of the full size. The processing time
decreased quadratically with the image size ratio as shown
in Figure 4-(a). Therefore, the face detection after a success-
ful prediction took only 1/25 or even less time than that for
a full-sized image. Figure 19 shows the average processing
times with prediction, including the handling of prediction
failure. The right bar in the figure shows the average pro-
cessing time for full-sized images. We found that the average
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Figure 18: Precﬁ%rtclo)n and full
detection rates for 5 volunteers
under normal device usage.

processing time dropped to 76ms when the successful predic-
tion rate was 98%. Though fail predictions led to full image
processing, the average processing time with prediction still
significantly outperformed those without prediction.

Off-the-Body Situation: We carried out similar experi-
ments when the device was away from the body. We had 5
volunteers put the phone beside their keyboard when they
were sitting in their cubicles. The phone invoked a face de-
tection each time the light sensor detected an event such
as when the user leaned towards the phone or the phone
received notifications. For each volunteer, the light sensor
triggered 7~15 times during half a day usage. We observed
the phone successfully captured all intentional events with
only a small fraction of false alarms (10% ~ 30% depends
on the actual position of the phone).

For each prediction, the predicted area is cropped and fed
into the face detection module. If a face was detected, we
counted it as a successful prediction. Otherwise, a full scan
was carried out to find the face. If a face was detected, we
counted it as a successful detection. We show the prediction
success rates and detection rates in Figure 20. We can see
that the prediction rates varied from 0.83 to 1.00 across dif-
ferent volunteers. The mean processing times with and with-
out prediction showed similar trends with Figure 19, which
is therefore omitted due to space limitations. In conclusion,
motion-based prediction significantly reduces the execution
time of face detection in Off-the-Body scenarios.

8.2.2 Evaluation of Viewing Angle Detection

The view direction is determined by two angles 6 and ¢,
as defined in Section 5.1. As the two angles are independent,
we evaluated them separately for easy acquisition of ground
truths. We first evaluated the detection of 8. We obtained 5
groups of images, each of which was from a volunteer. Each
group contained images at 6 different viewing angles, i.e.,
45°, 40°, 30°, 20°, 10°, and 0°.

We plot the mean estimated viewing angles versus the ac-
tual ones in Figure 8.2.2. The dashed line represents the
ideal case, where the detected viewing angles equal actual
ones, and the error bars show the max and min calculated
angles among different image groups. We can see that the
calculated results fit well with the ideal line. The errors
seem independent from the actual viewing angle. The max-
imum error across all test cases was less than 8 degrees,
which means our viewing angle detection algorithm satisfies
moderate application requirements. We also evaluated the
detection of ¢ in the same way as that for 6. The results
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are shown in Figure 8.2.2. From the figure, we can see that
average estimated angles fit well with the actual ones, and
the max-min variation is within 10 degrees.

8.2.3 Energy Consumption

In ViRi, we need to monitor the viewing situations con-
tinuously, and we have exploited free system states and
low power sensors (accelerometer, compass, proximity sen-
sor, and the light sensor) to trigger more energy expen-
sive camera sensors and face detection. The sensors them-
selves consume negligible energy. For example, the popu-
lar LSM330DLC accelerometer consumes about 11uA at its
highest rate, and it drops to 6uA in low power mode, and
the AK8975¢ compass consumes about 0.35mA at a high
sampling rate.

However, in current smartphones, such background sens-
ing needs to activate the main CPU and thus consumes more
energy than necessary. We profiled all the low power sensors
used by ViRi, and there are only a few mA differences when
using those sensors at the highest sampling rate or not us-
ing them at all. Notice that the computational complexity of
sensor sampling and processing are very simple. A low power
MCU such as MSP430 series can do the job, and consumes
only a few milliamperes. Actually, given the high demand of
continuous sensing of user contexts by many mobile applica-
tions, future mobile phones may have more energy-efficient
peripheral sensory boards [13,14] or may adopt new CPU
designs (e.g., [17]) that can dedicate one core for all the low
energy sensing tasks.

Besides the energy consumption of the low power sensors,
most of the energy consumed by ViRi is spent on image cap-
ture and face detection, which would depend on the actual
usage pattern of different users. Recall that ViRi is trig-
gered only when there are substantial contextual changes
(motion, pending notifications, and lighting). To obtain a



real understanding of the energy consumption of ViRi, we
surveyed 10 mobile phone users by checking the number of
prompts, including SMS, push emails, reminders, and push
notifications from their favorite social network applications
(WeChat and Weibo). For push notifications coming in a
batch, we treated them as a single event. So did the instant
message sessions.

To account for different usage patterns, we conducted con-
servative estimation by assuming all the predictions would
fail, and used the actual energy profiling results of the cur-
rent implementation. As mentioned in Section 8.1, we have
to go through the preview stage in the current implementa-
tion and thus consume more energy than necessary. Ac-
cording to the survey results, a user receives on average
30.4 events per day, with the standard deviation being 17.9
events. For each such event, in the worst case where all
predictions fail, Viri consumes about 644mA on average for
about 3 seconds, including the preview, image capture, pre-
diction, and fail over to full-image face detection. Then the
energy consumption for each detection is 0.54mAh. Multiply
this by 84, the sum of average and three-times deviation, and
the energy consumption is 45.1mAh, which is about 2.5% of
a typical 1800mAh battery.

ViRi also executes when the user actually views the screen.
In such cases, we perform viewing angle estimation only
when the device changes from one (quasi-)stationary atti-
tude to another significantly different one. In addition, the
CPU and the screen are already on. Thus the CPU over-
head for accelerometer sensing and the energy consumed by
lighting up the screen should be excluded. Let’s assume a
user views the screen for three hours a day and the attitude
changes every one minute, and assume a 90% prediction suc-
cess rate (from Section 8.2.1). Under these settings, ViRi
would consume about 10.45mAh, about 0.6% of a 1800mAh
battery. Therefore, with a conservative estimate, the en-
ergy overhead of ViRi in typical usage is about 3.1% of total
battery charge.

8.3 An Strawman App and Early Feedbacks

We have built a straw man mobile application that incor-
porates all the proposed viewing angle detection techniques.
With the application, a user can provide a picture of in-
terest and see the effect of viewing angle correction at ar-
bitrary slanted viewing angles by either holding the phone
and changing its orientation or resting the phone on a desk
and changing her own viewing posture.

We performed a small-scale, informal user study. All users
found that ViRi provides an intriguing viewing experience,
especially when the tilting angle is large. Images with a
black background showed better results than white ones.
We think this is partially due to the OLED screen that re-
mains completely dark for black pixels. The user trial also
revealed some issues, some of which were expected. For ex-
ample, ViRi’s perspective correction could lead to either a
full but smaller image or partial but larger image, due to the
reduced effective viewing area. Figure 22 shows two such ex-
amples. The full but smaller one will sacrifice fine details of
the original image, whereas the partial but larger one may
only show a portion. All users suggested studying smart
content selection, i.e., to show full or partial (full or partial
what), and to show which portion when showing partial con-
tent. Some users were further concerned that if ViRi were
applied on a larger display, then the top and bottom pix-

Figure 22: ViRi effects of full frame content. From
left to right: original content at slanted view, ViRi
with full but smaller image, ViRi with partial but
larger image.

els would have different viewing angles, which might require
luminance compensation. As could be expected, all users
want ViRi to be an OS feature and support all applications.

9. DISCUSSION

The effective working range of our prototype is only about
2 meters (1 meter to each side of the lens). We conjecture
this is partially due to the concatenation of the fisheye lens
and the existing phone camera system, which actually re-
duced the effective FOV of the fisheye lens, and also par-
tially due to the low resolution of the front-camera of the
phone we used. We expect if a high resolution, genuine fish-
eye camera were used, the working range and detection ratio
would increase significantly.

The adoption of a fisheye camera in ViRi opens up new
opportunities and challenges for many computer vision tech-
nologies such as face detection. We have adopted existing
face detection tools and focused on various pre-processing
techniques in order to use them directly. There are two
possible improvements to improve face detection. First, we
can apply super-resolution technologies to mitigate the view
compression problem of fisheye cameras to increase the face
detection rate. Second, we may directly perform face detec-
tion on fisheye images.

The high computation complexity of face detection makes
Cloud services an appealing solution. We chose not to use
the Cloud because it would create dependency on the net-
work infrastructure. Moreover, pictures are usually of large
size and wireless communication is also energy hungry, send-
ing pictures to the Cloud may consume more energy than
local processing, putting aside the long transmission latency.

The wide FOV of a fisheye lens makes it possible to include
multiple faces in certain situations such as in a meeting.
This may confuse the motion-based prediction. We have not
properly addressed this issue. One strategy is to detect the
largest face area and track the user or to simply disable this
function if multiple faces are detected. After all, a mobile
device is a personal device.

We have mainly focused on perspective correction for on-
axial slanted viewing angles, i.e., our sight line is perpendic-



ular to one of the device’s boundary frames. In real world
situations, we may end up with off-axial slanted viewing an-
gles. In principle, as previously shown, we can detect the
actual viewing angles (6 and ¢), it is more challenging to
show perspective corrected content on the screen, as the ef-
fective viewing area decreases at the order of cos6 - cos ¢.

10. RELATED WORK

Fisheye Image Correction: Several efforts [6, 19, 21]
have been made to build a more natural view for a fisheye
captured image. In [19], a fisheye photo is divided and pro-
jected onto multiple planes, leaving sharp seams between
joint scenes. Users can specify where to put the seams in or-
der to make them unnoticeable. In [6], the properties to be
preserved are controlled by the user, and the mapping from
the view sphere to the image plane is performed via weighted
least-squares optimization. These schemes improve distor-
tion correction performance at the cost of human interven-
tion and a high computation cost, which are not desirable for
our scenario. Thus, we use a simplified single global map-
ping to preprocess each image before face detection. The
global mapping allows efficient computation via simple ta-
ble lookup.

Mobile Applications Exploiting Face Detection: It
is natural to have face detection on mobile phones for bio-
metric unlocking, self-portrait, and mood sensing [15]. The
key constraints for applying face detection on mobile phones
are the limited computational resources (memory and CPU)
and variable environments [8]. As a result, existing face de-
tection libraries are ported carefully to mobile platforms to
minimize memory usage and do hardware specific optimiza-
tion. Examples [5] include OpenCV4Android, OpenCV iOS,
and FaceDetection WinPhone (OpenCV in C#). The latest
Android OS already provides native APIs for face detection.
In ViRi, we simply leverage existing SDKs instead of devel-
oping special face detection algorithms for fisheye images.

Eye Tracking: Eye tracking has recently gained the at-
tention of researchers. In [12], the authors proposed using
eye blinks to activate a smartphone app. To this end, they
tracked and mapped the user’s eye to the smartphone dis-
play. Another piece of recent work [9] focused on detecting
the blink rate of the user using a Samsung Galaxy Tab. A
key challenge in their work was to track the eye in spite of
camera motion. They developed an accelerometer-based eye
position prediction algorithm that exhibits some similarity
to our angle-based prediction scheme. As a salient feature
of the Galaxy SIII, Samsung introduced SmartStay, which
maintains a bright display as long as the user is viewing
the screen [16]. The key differences are that we cover both
Hand-Held and Off-the-Body situations and we avoided un-
necessary detection using low power sensors to trigger image
capture, which significantly reduces power consumption.

11. CONCLUSION

In this paper, we have mainly studied the viewing angle
estimation problem of ViRi, which aims to achieve an all-
time front-view viewing experience for mobile users in real-
istic viewing situations. We propose augmenting an existing
phone camera system with a fisheye lens and use face detec-
tion tools to detect the actual viewing angle. We have come
up with effective preprocessing techniques to correct the se-

vere distortion of fisheye images. We have designed and eval-
uated several techniques for energy savings, including con-
text sifting using low power sensors to maximally skip un-
necessary face detection, and efficient prediction techniques
to speed up face detection when there is a real need. We
have also built a straw man application to allow users to
experience the effect of viewing angle correction.

We think ViRi represents an initial step towards a more
general direction of mobile sensing: allowing the device to
gain perpetual awareness of it user, making mobile devices
more intelligent and serving its users better. It is an ex-
tremely difficult task under normal usage styles and worth
more study. For ViRi, our next step is to further study and
integrate the display adjustment to the graphics pipeline of
the operating system to support all applications.
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