Software Defined Batteries

Anirudh Badam, Ranveer Chandra, Jon Dutra, Steve Hodges, Julia Meinershagen, Thomas Moscibroda, Bodhi Priyantha

Anthony Ferrese (Tesla), Pan Hu (UMass), Evangelia Skiani (Columbia)

Evolution of Phones vs. Batteries

Multi-core processors, LTE, Wi-Fi, larger displays, sensors, ...

New battery technologies

Traditional Li-ion battery vs. emerging battery technologies
Fast-charging batteries: Charge in five minutes
Flexible batteries: Maximize capacity

Problem: Every battery has its benefits and drawbacks

Key insight: Combine batteries of different chemistries

How to connect them?

Need identical chemistries with similar voltage curves

Need for fine grained control of power in/out of each battery

Fine grained power control

Power determines loss and longevity.

Software Defined Batteries

SDB Battery

SDB Hardware

Goals:

- 1. Accurate & efficient power flow control (in & out)
- 2. Minimal silicon changes, low cost, small form-factor

Discharging:
Fine-grained load
sharing across batteries

Charging:

Change charge current, charge one battery from another

SDB Hardware - Discharging

How is fine-grained load-sharing achieved?

- By switching between batteries at a high-frequency
- By spending configurable amount of time on each battery

Naïve Solution

Our Solution

SDB Hardware - Charging

Naïve Solution

SDB Hardware - Evaluation

SDB Hardware Cost

- Switching/sharing → integrated into existing PMIC
- Negligible extra silicon → tens of cents per IC
- No new chips → no additional weight or volume

SDB Software

SDB Algorithms: For Discharge

SDB API: Meet User's Needs

Simple parameter to capture user's need

Policy engine picks algorithm based on selected parameter

SDB API: Meet User's Future Needs

Instantaneous optimal may not be global optimal

Future workloads determine current policy

For simplicity, assume user cares only about daily battery life

SDB API: Implications

No hardware or firmware changes
Only software changes

SDB Evaluation

- Fast and easy experimentation for OS developer
- Repeatable experiments
- Does not explode batteries!

Case Study: Flexible Batteries for Wearables

Wearables' batteries are constrained by volume restrictions

Flexible batteries can help augment the capacity without increasing bulk

- Flexible batteries are inefficient
 - They have a rubber-like electrolyte with high resistance
- Use Li-ion battery for high-power scenarios
- Flexible battery for low-power scenarios
- Experiment demonstrates how future workload knowledge helps SDB improve battery life

Case Study: Flexible Batteries for Wearables

Case Study: External Batteries

- External batteries today charge internal battery
- This is inefficient because of charging losses
- Idea: Draw power from both using SDB
- However, need to know how external battery is used
 - If user always plugs it in then draw power from both
 - If user plugs it in only to charge the tablet then charge the internal battery with the external one
- SDB can improve battery life by understanding usage

Case Study: External Batteries for 2-in-1s

SDB v.s. External Battery Charging Internal Battery

Summary & Future Work

- SDB enables battery to be managed by the OS as a resource
 - Power to/from the battery can be adapted based on workload
- Combining different chemistries leads to significant benefits
 - New scenarios, increase capacity, reduced charging times
- Moving ahead:
 - Integration with calendars and smart assistants, e.g. Cortana
 - Improving electrical vehicle range based on incline, temperature, traffic
 - Increasing drone flight time based on wind conditions, flight path

Thank you!