
Software Defined Batteries

Anirudh Badam1, Ranveer Chandra1, Jon Dutra1, Anthony Ferrese2, Steve Hodges1, Pan Hu3,
Julia Meinershagen1, Thomas Moscibroda1, Bodhi Priyantha1, Evangelia Skiani4

1Microsoft Corporation, 2Tesla Motors, 3University of Massachusetts Amherst, 4Columbia University

Abstract
Different battery chemistries perform better on different

axes, such as energy density, cost, peak power, recharge

time, longevity, and efficiency. Mobile system designers are

constrained by existing technology, and are forced to se-

lect a single chemistry that best meets their diverse needs,

thereby compromising other desirable features. In this paper,

we present a new hardware-software system, called Software

Defined Battery (SDB), which allows system designers to in-

tegrate batteries of different chemistries. SDB exposes APIs

to the operating system which control the amount of charge

flowing in and out of each battery, enabling it to dynam-

ically trade one battery property for another depending on

application and/or user needs. Using microbenchmarks from

our prototype SDB implementation, and through detailed

simulations, we demonstrate that it is possible to combine

batteries which individually excel along different axes to de-

liver an enhanced collective performance when compared to

traditional battery packs.

1. Introduction
The utility of a mobile device is often constrained by the ca-

pabilities of its battery. Whilst integrated circuit performance

has doubled every eighteen months according to Moore’s

law, the same is far from true for battery technology. Bat-

tery performance can be evaluated in many different ways

(see Table 1), but no matter which metric we look at, it has

taken more than a decade to double performance.

Furthermore, the various properties of batteries are often

at odds with each other. For example, batteries with higher

power densities tend to have lower volumetric and gravimet-

ric energy densities, and vice versa. Similarly, making a con-

formable battery that fits a particular industrial design com-

promises its performance characteristics.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SOSP’15, October 4–7, 2015, Monterey, CA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3834-9/15/10. . . $15.00.
http://dx.doi.org/10.1145/2815400.2815429

Battery Characteristic Units
Energy capacity joule

Volume mm3

Mass kilogram

Discharge rate watt

Recharge rate watt

Gravimetric energy density joule / kilogram

Volumetric energy density joule / liter

Cost $ / joule

Discharge power density watt / kilogram

Recharge power density watt / kilogram

Cycle count Number of dis-

charge/recharge cycles

Longevity % of original capacity after

N cycles

Internal resistance ohm

Efficiency % of energy turned into

heat

Bend radius mm

Table 1. A number of battery characteristics. These are of-

ten in tension with each other – for example increasing

recharge rate compromises longevity.

Such tradeoffs are present even within a given physical

battery. For example, energy delivered by a battery in a sin-

gle charge-discharge cycle (energy capacity) is inversely re-

lated to the rate at which the battery is drained (discharge

rate). This is because the resistance losses inside a battery

are proportional to the square of the current. Similarly, a bat-

tery’s longevity – its ability to perform consistently follow-

ing many charge-discharge cycles – is inversely related to

the discharge and recharge rates. This is because higher cur-

rents speed up the creation of fissures in the electrodes that

reduce the amount of energy a battery can store.

In summary, no single battery type can deliver the ever-

growing list of requirements of modern devices: fast charg-

ing, high capacity, low cost, less volume, light in weight, less

heating, better longevity, and high peak discharge rates.

A growing range of battery chemistries are under devel-

opment, each of which delivers a different set of benefits

in terms of performance. We believe that combining multi-

ple of these heterogeneous batteries instead of using a single

battery chemistry can allow a mobile system to dynamically

215

trade between their capabilities and thereby offer attractive

tradeoffs.

However, traditional methods of integrating multiple bat-

teries are not suitable for heterogeneous batteries. Simply

connecting them in series or parallel chains does not provide

enough control over the flow of energy: batteries connected

in series can only supply the same amount of current; bat-

teries connected in parallel must operate at the same voltage

and can only supply currents that are inversely proportional

to their internal resistances.

We propose a new system, called Software Defined Bat-

tery (SDB), that allows heterogeneous batteries with differ-

ent chemistries to be integrated in a mobile system. SDB

consists of hardware and software components. The hard-

ware enables fine-grained control of the amount of power

passing in and out of each battery using smart switching cir-

cuitry. The charging and discharging hardware is designed to

be low-cost, and hence the algorithmic complexity of com-

puting how much power to draw from each battery, and how

to recharge each battery, is placed in the SDB software that

resides in the operating system (OS).

Deciding how much power to draw from each battery, and

how to charge each battery is non-trivial. It depends on the

efficiency of each battery under different workloads, the age

of each battery, and also the user’s workload and usage pro-

file. For example, if a high power workload is anticipated in

the future, then it could be worthwhile conserving charge on

the battery that is more capable of handling such a workload

in an efficient manner.

The SDB software component that resides in the OS

implements a set of policies and APIs. The SDB software

uses simple APIs to communicate with the SDB hardware.

The algorithms implemented by this software use various

metrics for increasing the single charge-discharge duration

of the device, and the longevity of the batteries, and thereby

decide the ratios in which to discharge each battery, and the

ratios in which to charge them. We present the details of the

APIs and policies in Section 3.

The SDB design is cross-layer and involves new chemistries,

additional hardware, and new OS components. Although

an alternative SDB implementation can be hardcoded in

firmware, our cross layer approach has two main benefits.

First, it opens up new battery parameters, previously unavail-

able to OS designers, for resource optimization. In existing

mobile devices, the battery is usually treated as a black box,

and is simply assumed as a reservoir of charge. As we show

in Section 5, OS techniques yield substantial gains in battery

usage. Second, this design allows a system designer to select

any combination of batteries for an optimal design, includ-

ing new chemistries as they are invented, and developed. All

of these can be enabled through a software update.

Even with existing batteries, SDB enables several new

scenarios, such as:

Bendable batteries for long-lived wearable devices:

Bendable batteries are appealing for wearable form factor

devices. For example, thin, bendable batteries can be in-

stalled in the straps of a smart watch to augment a traditional

Li-ion battery in the body, and significantly improve battery

life. However, these batteries are much less efficient than tra-

ditional Li-ion batteries because their rubber-like electrolyte

increases internal resistance. Using SDB, we develop a pro-

totype hybrid battery system using a bendable battery and a

Li-ion battery, and develop an algorithm that a smart-watch

OS can use to minimize the inefficiency in such a system

based on user workload.

Supporting high power workloads: SDB enables two

such scenarios. First, SDB enables a fast charging battery to

be used in combination with a high energy density battery. A

device can then gain a good percentage of its charge in just

a few minutes, without losing out on total battery capacity

or the longevity of the battery back. Second, SDB supports

higher turbo modes for the CPU using a high power density

battery in combination with a high energy density battery.

SDB helps the OS decide when to enable higher turbo modes

based on workload requirements, and also to intelligently

manage the batteries.

Battery management for 2-in-1s: In 2-in-1 laptops that

have a detachable keyboard, external battery packs under

the keyboard are typically used to charge the main internal

battery. This however, reduces the efficiency and effective

energy capacity because of the losses involved in charging

one battery from another. With SDB it is possible to reduce

this inefficiency and improve effective energy capacity by up

to 22%.

We discuss these in more detail in Section 5.

2. Background
Lithium-ion (Li-ion) batteries are commonly used in today’s

battery-powered electronic devices. In this section, we first

present some basics of Li-ion batteries, and then describe

how existing systems manage these batteries.

2.1 Battery Technologies
A Li-ion battery contains a negative electrode (the anode),

which is usually made of carbon in graphite form, and a

positive electrode (the cathode), which is typically a metal

oxide. A separator ensures physical separation between the

anode and the cathode to prevent shorting, and the battery is

filled with an electrolyte composed of a lithium based salt

whose ions can easily pass through the separator. Current

is discharged when the electrodes are connected externally

over a resistive load while positive Lithium ions flow from

the anode to the cathode through the electrode and separator.

During charging, Li-ion batteries store energy by trapping

positive lithium ions in the anode when an external potential

is applied, which is larger than the potential between the

electrodes.

216

Power
Density

Form-factor
Flexibility

Energy
Density

Affordability Longevity

Efficiency

Type 1: LiFePO4 Cathode, high-density liquid polymer separator
Type 2: CoO2 Cathode, high-density liquid polymer separator
Type 3: CoO2 Cathode, low-density liquid polymer separator
Type 4: CoO2 Cathode, rubber-like solid ceramic separator

(a) Li-ion batteries compared

75

80

85

90

95

100

105

0 100 200 300 400 500 600

Ca
pa

ci
ty

 A
ft

er
 N

 C
yc

le
s (

%
)

Cycle Count

0.5A 0.7A 1.0A

(b) Charging rate affects longevity

0

5

10

15

20

25

30

35

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

In
te

rn
al

 H
ea

t L
os

s (
%

)

Power Used to Drain Battery (C Rate)

Type 2 Type 3 Type 4

(c) Discharging rate vs. lost energy

Figure 1. Li-ion Battery Properties

Li-ion battery capabilities, such as longevity, energy den-

sity, and internal resistance, are largely determined by the

materials used for the electrodes and the separator. The bat-

tery’s gravimetric and volumetric energy densities are af-

fected by the strength of the separator. The resistance of the

battery, and hence its inefficiencies, depend on the resistance

of the separator, which typically increases with the age of the

battery. The power density of the battery is also affected by

aging. The structural integrity of the electrodes determines

how much energy they can store – some Lithium ions get

permanently trapped in the anode. The anodes can develop

cracks as they age, which can ultimately reduce both energy

and power densities because Lithium ions get permanently

trapped within the cracks. The material used for the elec-

trode determines the initial energy and power densities, and

also the expected longevity [5].

Figure 1(a) demonstrates the capabilities of four popular

Li-ion batteries, which differ in the chemistry of materials

used for the cathode and the separator. All four batteries have

graphite as their anode.

Batteries of Type 1 are typically used in powered tools

that need to charge quickly and provide high power for a

short duration of time while not requiring a large energy

capacity. Such batteries are a poor choice for mobile devices

because of their poor energy density – a Type 1 battery is

usually double the volume of a Type 2 battery with the same

energy capacity. Type 2 batteries are commonly used in most

mobile devices today. We measure the loss in capacity with

respect to number of charge-discharge cycles for a sample

Type 2 battery, and observe that the battery degrades much

faster when discharged at higher current values, as shown in

Figure 1(b).

Type 3 batteries are an emerging variation over Type 2

that have a slightly higher power density at the expense of

some energy density. This is achieved by making the sepa-

rator less dense allowing more Lithium ions to pass through

per unit time. However, to retain enough strength to sepa-

rate the electrodes, the weight of the separator is kept the

same and this usually leads to decreased energy density as

separators cannot store energy – only the electrodes can. Fi-

nally, Type 4 is another emerging battery that is flexible and

bendable because of the physical properties of the rubber-

like (ceramic-based) separator used – while the electrodes

are implemented by coating material along the cell’s walls.

Unfortunately, such separators increase the resistance to pas-

sage of ions and thereby result in reduced power density and

higher inefficiency, as shown in Figure 1(c).

2.2 Typical Power Management
Figure 2 shows a block diagram of the typical power man-

agement hardware. It consists of a (i) Battery (ii) Fuel gauge

(iii) Battery charger, and (iv) Voltage regulator.

A Battery pack has one or more battery cells. Multiple

cells are used to achieve higher voltage or higher capacity.

While such multi-cell configurations exist today [2, 21–23],

these cells have the same chemistry are either connected in

series, parallel or a combination thereof. They are treated

as a single monolithic battery by the OS. Our aim is to

use a heterogeneous set of cells and achieve wide dynamic

characteristics by exposing the cells directly to the OS.

The Fuel gauge keeps track of the state of charge (SoC)

of the battery by measuring the voltage across the battery

terminals, and the current flowing in and out of it. This

information is exposed to the OS to take coarse grain actions

based on SoC.

The Battery charger charges the battery with an appro-

priate charging current profile based on the battery’s state

of charge, the terminal voltage (the potential difference be-

tween the anode and the cathode), and the power source. An

example charging profile looks like: the battery is charged at

a constant high current until SoC reaches 80% (for example),

and the charging is limited to a trickle charge or low current

after the SoC reaches beyond 80%. Such profiles help ensure

that the battery is not damaged given that higher currents

tend to be damaging to the anode beyond a certain SoC.

Due to the battery’s internal resistance R, the battery ter-

minal voltage changes with the load current I due to the IR

voltage drop. The internal resistance and the battery volt-

age themselves change with the amount of charge left in the

battery. The job of the Voltage Regulator is to hide these

terminal voltage variations due to changing potentials at the

electrodes and the changing internal resistance and present

a constant voltage to the load. The regulator also helps the

processor implement Dynamic Voltage and Frequency Scal-

ing (DVFS) by adjusting it’s output voltage. Mobile devices

217

Battery
Charger

Fuel
Gauge

Switched
Mode Voltage

Regulator

V

I

Fixed charging profile

Switch Inductor

Capacitor

Switching
Control

OutputInput

Battery

Figure 2. The traditional power management hardware

use switched mode voltage regulators due to their high ef-

ficiency. As the name implies, a switch mode power supply

contains a switch that opens and closes to transfer packets of

energy from the battery to an inductor. The inductor’s volt-

age is smoothed using a capacitor (figure 2). A control loop

maintains a constant voltage under varying load currents by

changing the energy per packet or the packet switching fre-

quency.

Typically, all these modules are contained in a single inte-

grated circuit called a Power Management Integrated Circuit

(PMIC) in a mobile device. The PMIC communicates with

the OS over a serial bus. In current designs, the interactions

between the OS and PMIC are limited to query operations,

such as inquiring about remaining charge in the battery, ter-

minal voltage or the cycle count. These parameters are ex-

posed through the Advanced Configuration and Power In-

terface (ACPI). However, none of these APIs allow the OS

to set the battery parameters, and in particular to change the

amount of charge to be drawn from or provided to each cell

within a battery pack. Through the SDB system, we propose

enabling fine grain control over the behavior of these hard-

ware sub modules by exposing a richer software API to the

OS to dynamically change the amount of charge to be drawn

from or provided to each battery.

3. SDB Design
SDB allows a device to use diverse batteries through fine-

grain control of the amount of charge flowing in and out of

each battery. SDB provides APIs to the OS to change the

aforementioned power values based on user workload. We

describe the SDB system in detail in this section.

3.1 System Overview
The SDB system spans components across three layers: the

batteries and their chemistry, the battery management cir-

cuit, and the operating system. We outline these components

and their interactions in Figure 3.

SDB allows a system designer to combine diverse batter-

ies. The particular batteries chosen depend on the scenario,

such as a fast charging battery and a high energy battery for

a tablet, or a bendable battery and high energy battery for

a smart-watch. We describe some of these combinations in

Section 5.

Battery 1

OS

Power

Power

Control
Signal

Battery 2

Battery 3

Battery 4

Discharging
Circuitry

SDB
Discharging

Circuit

SDB Policy
&

Algorithms

Charging
Circuitry

SDB
Charging

Circuit

Power Supply Power

μController

Figure 3. SDB System Overview

However, combining different battery types is not trivial.

These batteries might have different capacities, and differ-

ent terminal voltages at various states of charge. Therefore,

we propose a new hardware architecture for charging and

discharging. We design a new power distribution circuit for

fine-grain control of how multiple batteries are discharged to

support system load. A microcontroller interfaces between

this power distribution circuitry and the mobile device OS

to control the charging and discharging of batteries accord-

ingly.

To enable flexibility in design, and to allow quick changes

in policy, we only implement the mechanisms in hardware,

and all policies are managed and set by the OS. A runtime

component in the OS monitors the applications, the charging

and discharging behavior of the users, and accordingly sets

policies that meet user expectations from the mobile device

in terms of daily battery life, longevity of the battery-pack

and also performance of the CPU as we demonstrate in

Section 5.

3.2 SDB Hardware
The SDB hardware needs to support discharging and charg-

ing across multiple, heterogeneous batteries.

For discharging, it has to provide a flexible mechanism

for fine grain control of how the load current is supplied from

each battery. This should support two things: coarse grain

switching of the load across multiple batteries where the total

load is supplied by a particular battery for an extended period

of time; and the fine grain sharing of the load where a certain

fraction of the load is drawn from each battery.

For charging, the SDB hardware has to support control

over how batteries are charged. In contrast to existing solu-

tions where batteries are charged according to a fixed charg-

ing profile, SDB requires setting of charging currents and

charging profiles dynamically based on OS policies. Under

certain circumstances, it should even be possible to charge a

battery from another one.

218

Designing these flexible charging and discharging cir-

cuits are challenging for two reasons. First, due to the high

currents that flow in these circuits, any electronic compo-

nent in series with the current flow will cause energy losses.

Hence, these circuit designs should introduce as few of these

components as possible. Second, each extra component we

introduce can increase the weight, volume and bill of ma-

terial (BoM) cost of the device, which will make the pro-

posed solution unattractive in the highly competitive hard-

ware market.

3.2.1 SDB Discharging Circuit Design
A simple discharging circuit can be implemented using

a combination of an electronic switch and a capacitor as

shown in figure 4(a). The microcontroller achieves load

switching by connecting the appropriate battery to the load.

To achieve load sharing, the load is switched between the

batteries at a high frequency in round-robin fashion. The ra-

tio of the current draw is determined by the fraction of time

the switch is connected to a particular battery. The capaci-

tor acts as an energy store to smooth out the discontinuities

due to switching. Parasitic battery capacitance and external

capacitors smooth out the high frequency battery current.

However, this naive implementation has two main draw-

backs. First the switch, typically implemented using a Field

Effect Transistor (FET), has a finite on resistance that causes

significant power loss at high load currents. Second, a switch

with high power handling capability and the necessary ca-

pacitors increase the BoM cost and space required.

To overcome these shortcomings, we designed a new

switched mode regulator architecture that integrates fine-

grain battery switching into the regulator itself. As shown

in discharging side of Figure 4(c), we restructure the built-in

switch to achieve voltage regulation and support switching

between multiple batteries – by drawing packets of energy

from the batteries in a weighted round-robin fashion. We

reuse the storage capacitor to smooth out the load current

variations due to switching. We have evaluated the correct-

ness of the proposed solution under different battery volt-

ages and load conditions by running LTSPICE [26] simu-

lations that accurately simulate the internals of the switch

mode regulators. A more in-depth discussion on the correct-

ness of the proposed solution under varying conditions is

beyond the scope of this paper.

3.2.2 SDB Charging Circuit Design
The SDB charging circuit should have the ability to charge

batteries at a configurable rate and also charge them from

each other. Given that such charging should be possible irre-

spective of the battery voltage, the batteries should be con-

nected through a buck-boost regulator, such that the energy

source is at the input and the energy sink is at the output of

the regulator. A buck-boost regulator is a particular form of

switching regulator where the regulator output voltage can

be either less than or greater than its input voltage.

Apart from charging batteries from each other, it should

also be possible to charge all batteries from an external

power supply. Typically, the external supply voltage is

greater than the battery voltage, and buck regulators–a form

of switched mode regulator whose output voltage is smaller

than the input voltage–are used for charging the batteries.

Apart from different charging configurations, SDB re-

quires dynamic fine grain control over the charging profile.

This is achieved by instrumenting each switched mode reg-

ulator with multiple charging profiles where the SDB mi-

crocontroller dynamically selects the appropriate charging

profile based on OS policy decisions.

Figure 4(b) shows how these modules can be combined

to implement a flexible charging circuit. However, a major

drawback of this configuration is the large number of switch-

ing regulators (O(N2) for N batteries) required, which neg-

atively impacts the device BoM cost and space requirements.

We use a special characteristic of synchronous buck

regulators–a form of buck regulator with superior current

switching characteristics– to design a much simpler battery

charging circuit. By appropriately controlling specific pa-

rameters, a synchronous buck regulator can be operated in

reverse buck mode where the current can be made to flow

from the output of the buck regulator to its input while main-

taining a large voltage at the input (specific details of this

reverse mode operation is beyond the scope of this paper).

Figure 4(c) shows the optimized charging circuit which

requires only O(N) switched mode regulators to charge N
batteries. When an external supply is present, the microcon-

troller configures both R1 and R2 in buck mode to charge the

batteries. When external power is removed, R1 and R2 are

disabled. When B2 is to be charged from B1, R1 operates in

reverse buck mode while R2 operates in buck mode and vice

versa.

3.3 SDB Policies and APIs

Tradeoff Description
Charge Power vs.

Longevity

Higher charge rate quickly charges

the battery, but results in faster in-

ternal crack formation leading to re-

duced cycle count.

Discharge Power

vs. Longevity

Higher discharge rates support high

current workloads, but reduced cy-

cle count.

Discharge Power

vs. Battery Life

Higher discharge power causes

higher DC Internal Resistance

(DCIR) losses that are proportional

to the square of the current.

Table 2. Tradeoffs impacting SDB policies.

Our current SDB software architecture is illustrated in

Figure 5. An SDB Runtime encapsulates the SDB micro-

controller from the rest of the OS. The SDB Runtime is re-

219

Microcontroler

Battery 1

System
Load

Battery 2
Electronic Switch

Capacitor

(a) Naive discharging circuit

Buck
Regulator

Microcontroller

External
Power

Charging Profile
Select

Buck-
Boost
Regulator

Buck
Regulator

Buck-
Boost
Regulator

Charging Profile
Select

(b) Naive charging circuit

Fuel Gauge

Modified
Switched Mode
Regulator

Synchronous
Reversible

Buck
Regulator (R1)

Fuel Gauge

Microcontroller

Power
OutPower

In

Multiple
Charge Profiles

Power Management Bus

Synchronous
Reversible

Buck
Regulator (R2)

B1

B2

Charging
Circuit

Discharging
Circuit

(c) SDB hardware

Figure 4. (a) A simple switch and capacitor-based battery switching and sharing solution. (b) A naive implementation of a

flexible charging circuit consisting of 2 buck regulators and 2 buck-boot regulators with dynamic charging parameters. (c) SDB

hardware architecture for an example 2-battery system. The switched mode regulator implements discharge across multiple

batteries, and the reverse buck regulators implement charge.

Operating System

SDB
Controller

Battery 2
Battery 1

OS Power Manager

SDB Runtime

Charging
Directive

Parameter

Discharging
Directive

Parameter

Other OS Components

External
PowerDischarging

Parameter to Policy
Database

Charging
Parameter to

Policy Database

Map
Set Policies

Convey
Power

Requirement

Figure 5. SDB software architecture

sponsible for all scheduling decisions affecting the charg-

ing and discharging of batteries. It takes clues from the rest

of the OS, and communicates the charging and discharging

scheduling decisions to the SDB controller.

APIs: For a system with N batteries, the SDB Runtime

maintains two N -tuples (c1, . . . , cN) and (d1, . . . , dN) of

non-negative values, one for charging and one for discharg-

ing. In both cases, the N values add up to one and repre-

sent power ratios; i.e., the numbers represent the fraction of

power that must go in and out of each of the N batteries. The

runtime communicates with the SDB microcontroller using

the following four APIs:

• Charge(c1, c2, ..., cN): Charge N batteries in

proportion to c1, c2, ..., cN , when being charged from an

external source.

• Discharge(d1, d2, ..., dN): Discharge N bat-

teries in proportion to d1, d2, ..., dN , when being dis-

charged.

• ChargeOneFromAnother(X, Y , W, T): Charge

battery Y from battery X with a power of W for time T .

• QueryBatteryStatus(): Returns an array with

state of charge, terminal voltages and cycle counts for

each battery.

The SDB Runtime affects changes in the charging and

discharging behavior by adapting the 2N numbers and send-

ing them to the microcontroller using the above APIs, which

enforces the ratios. Such changes can be triggered for ex-

ample by a change of the user’s needs, the battery state,

workload patterns, or external factors such as a change in

device temperature etc. Determining optimal battery charg-

ing/discharging policies is non-trivial, and the underlying al-

gorithmic problems are deep and interesting. Often, various

battery properties are in tension with one another. For exam-

ple, fast-charging a battery all the time can greatly accelerate

its aging. Other such tradeoffs are given in Table 2. In this

paper, we only scratch the surface of these algorithmic prob-

lems and instead describe a set of natural policy heuristics

that exhibit good albeit non-optimal performance.

Metrics: Two key metrics any charging/discharging pol-

icy seeks to optimize are Cycle Count Balance (CCB) and

Remaining Battery Lifetime (RBL). The RBL metric simply

captures the remaining battery lifetime of the device, assum-

ing that no further charging occurs in the future. In other

words, RBL is the amount of useful charge in the batteries.

The CCB metric reflects that–ideally–the charging and dis-

charging policies should maximize longevity of the device,

by balancing the charging cycles of each battery. In a het-

erogeneous battery system each battery is a unique precious

resource that excels on a few metrics of interest described

in Table 1. Therefore, having a metric like the CCB ensures

that these batteries are aging such that the properties of a

battery that the user is most interested in are preserved over

time. For example, a battery that has the ability to charge fast

must be treated as a precious resource for a user who relies

on fast charging during low-battery situations.

Concretely, let χi be the number of charging cycles tol-

erable by battery i before its capacity drops below some ac-

ceptable threshold, and let cci be the number of charging

cycles of battery i. The wear-ratio λi = cci/χi describes

what fraction of the tolerable recharge cycles have already

been consumed by battery i. We define CCB as the ratio

CCB = maxi λi/minj λj , i.e., the ratio between the most

and least worn-out battery, normalized to each battery’s total

220

tolerable cycle count. A device’s longevity is maximized by

balancing CCB.

Charge/Discharge Algorithms: The heuristics currently

driving our SDB Runtime are simple and driven by the

following observation: It is possible to derive charging

and discharging algorithms that (in isolation!) optimize the

CCB and the instantaneous RBL metric. We use these four

“optimal” algorithms (CCB-Charge, RBL-Charge, CCB-

Discharge, and RBL-Discharge) and weigh them by means

of two parameters–Charging and Discharging Directive

Parameter–handed to the SDB Runtime by the rest of the

OS. Essentially, these parameters guide the SDB Runtime

to weigh one of the algorithms more heavily at any moment

in time. For example, a low value of the Charging Directive

Parameter indicates that the user is in no hurry (e.g. charg-

ing at night), and that the Runtime should prioritize the use

of the CCB-Charge algorithm. On the other hand, a high

value of this parameter would lead the Runtime to prioritize

the RBL-Charge algorithm in order to increase the useful

charge (and thus the remaining battery lifetime) in the bat-

teries as quickly as possible - say just before boarding an

airplane. The discharge scenario is similar.

The CCB-Charge and CCB-Discharge algorithms are

simple. These policies essentially enforce the controller to

schedule the batteries (either for charging and discharging)

in such a way that the resulting CCB is minimized i.e. is as

close to 1 as possible. Our RBL-algorithms are more inter-

esting. Consider the discharge case, and let y1, . . . , yN be the

amount of current drawn from each of the batteries. The key

underlying insight is that we can maximize the instantaneous

RBL of the battery system by minimizing the total resistance

losses across all the batteries. This can be achieved if the re-
sistances of the batteries are proportional to the square-root
of their DCIR-to-SoC ratios. Thus, the RBL-Discharge al-

gorithm seeks to allocate the currents y1, . . . , yN in such a

way that the effective resistances of batteries are as much

as possible proportional to the square-root of their DCIR-

to-SoC rates minimizing the total energy wasted through

resistive losses. Mathematically speaking, let δi be the in-

stantaneous derivative of battery i’s DCIR curve, and let Ri

be the current resistance. Then, the RBL-Discharge algo-

rithm balances R′
i =

√
δi/λ, where R′

i = Ri + δiyi and

λ is a Lagrangian multiplier constant. Again, the case for

charging (RBL-Charge) is similar. The SDB runtime calcu-

lates these power values at coarse granular time steps and

updates the ratios based on the DCIR-SoC curves given by

the manufacturer of the batteries.

A word of caution is necessary. The above RBL-algorithms

are “optimal” only in an instantaneous sense. They minimize

the instantaneous decrease of RBL (when discharging), or

maximize the instantaneous increase of RBL (when charg-

ing). However, they are not globally optimal. Across the

length of an entire workload, these algorithms might not ac-

tually maximize battery lifetime as we show in Section 5;

�������	
������
�

�������

�
�����
���

��
�����
�
���
���

��������
�����������
�

����������������

������
���

�����
�
��

Figure 7. SDB Prototype Implementation

i.e., if we had knowledge of the future workload, we could

improve upon the above instantaneously-optimal algorithms

by making temporarily sub-optimal choices from which the

system can profit later, e.g., keeping a battery fully charged,

if we know that this battery will be particularly helpful in

the way of CCB or RBL for a future workload. For example,

the overall cycle life or daily battery life may be improved

when compared to using instantaneous mechanisms all the

time.

Exploring these and other algorithmic nuances is interest-

ing, but beyond the scope of this paper. We just note that the

SDB resource optimization problem differs from traditional

resource scheduling mechanisms, such as for Big.Little pro-

cessors, hybrid storage, and SSD wear leveling, because of

the resource in question – batteries. The main focus of tradi-

tional resource management algorithms is to multiplex a re-

source efficiently across a number of entities, such as users,

processes, virtual machines or erase blocks in case of SSDs

over some fixed periods of time. The challenge of battery re-

source scheduling is threefold: daily battery life cannot be

simply extended by minimizing instantaneous power losses;

their long-term cycle life cannot be simply extended by bal-

ancing cycle life across batteries. Knowledge of impending

workload can be used to improve the latter two metrics by

picking strategies that may not be an instantaneous opti-

mums as we demonstrate in Section 5. We hope that expos-

ing the appropriate APIs will help system and algorithm de-

signers to customize the scheduling algorithms for their bat-

tery configuration, and user workloads based on predicted as

well as expected user behavior.

4. SDB Prototype & Microbenchmarks
In this section we describe the implementation of SDB and

present microbenchmarks to evaluate it.

4.1 SDB Hardware Prototype
We built a hardware prototype of the SDB hardware archi-

tecture in Figure 4(c). Figure 7 shows the components of our

prototype.

221

��

����

��

����

��

���� ���� ���� �� �� �� �����
�
��
��
��
���

��
	�

�
�

��
��

��

���	����

�����������

(a) The % power loss of the discharge

circuit vs discharge power

��
����
����
��	�
��
�
����
����
��
�

��� ��� ���� ���� ���� ���� ���� ����

��
��
���

��
��
�	

�
��
�

��

����������������

(b) The % error of the measured %

discharge current vs the % discharge

current set by the microcontroller.

���

���

���

���

���

����

���� �� ���� ���� ���� ���� �� ������
��
��

��
��
�	

��

�

��
��
��
��
��

�
��

��

	��������	�����������

(c) Efficiency of the charging circuit

as a % of the typical efficiency of the

charging chip vs charging current.

��

����

����

��	�

��
�

����

����

���� ��
� ���� ���� �� ���� ��
� ���� ���� ��

��
��
���

��
��
��
�	
��

�

��

	
��	��	�	�������
���

(d) The % error of the measured

charging current vs the charging cur-

rent set by the microcontroller

Figure 6. SDB Hardware Microbenchmarks

We built a custom controller board with a ARM Cortex

M3 microcontroller, a low-loss switching circuit, and a Blue-

tooth wireless link. We also built a custom fuel gauge mod-

ule that consists of a coulomb counter and a controller. We

modified an off-the-shelf battery-charger evaluation board to

enable dynamic charge current setting by the microcontroller

on the control board. These hardware modules were inter-

connected as shown in figure 7.

We highlight several key differences between our proto-

type and the proposed hardware solution. First, due to the

difficulty of making hardware connections directly to the

power management serial bus on our experimental devices,

we use a Bluetooth wireless connection to interface between

the microcontroller and the SDB runtime in the OS. We

power the Bluetooth radio module on the hardware prototype

using an external power source to eliminate any interference

with results.

Since it is difficult to modify the existing switched mode

regulators to achieve fine-grain current sharing, we used an

ideal diode to switch between the batteries. The switching

between batteries is extremely fast, and hence the battery

sees a constant, smooth current draw. We note that the small

power-loss due to this switch underestimates the efficiency

achievable by the proposed solution. As mentioned in sec-

tion 3, the extra power-loss and the high component cost can

be eliminated by augmenting existing switching regulators

to switch across multiple batteries.

The boards were designed with Altium Designer [1], a

circuit board development package.The firmware was writ-

ten in C using the IAR for ARM V7.40 tool chain. The board

firmware contains � 3500 lines of code. We also developed

the prototype SDB Runtime shown in Figure 5 with 1200

lines of code.

We conducted simulations and microbenchmark experi-

ments to evaluate the efficiency and accuracy of our hard-

ware design, as well as to evaluate the correctness of the

firmware and the runtime. Circuit simulations were done in

LTSPICE [26], a simulation program with integrated circuit

emphasis (SPICE). We generated the circuits shown in Fig-

ure 4 in LTSPICE, and conducted extensive simulations at

various power loads to validate system correctness, stability,

and responsiveness.

4.2 Hardware Microbenchmark results
We conducted several microbenchmark experiments to eval-

uate the efficiency and accuracy of our hardware. We mea-

sured currents and voltages using a Fluke 8846A 6.5 Digit

Multimeter and an Agilent DSO-X 2004A Oscilloscope. We

computed power loss of a module by multiplying the voltage

drop across the module by the current flowing though it. We

used an Agilent E3640A Power Supply to power the circuit.

We first evaluate the efficiency of the discharge circuit

due to battery switching and sharing. Figure 6(a) plots the

power loss vs the load power of the discharge circuit. We

observe that the power-loss remains � 1% under typical

light loads while it reaches 1.6% with a 10W load. We note

that these numbers are likely to become negligible when

the switching and sharing capability is integrated into the

regulator as proposed in Figure 4(c).

We next evaluate battery sharing accuracy of the dis-

charge circuit based on the discrepancy between the load

current assigned to a battery and the actual measured cur-

rent draw from the battery. Figure 6(b) plots the error of the

measured currents vs the proportional current draw assign-

ment. We observe that our implementation has < 0.6% error

under a wide range of current assignments.

Next we evaluate the performance of the charging circuit.

Since the charging efficiency has an upper bound on the

efficiency of the actual chip used, we report the measured

efficiency of our implementation compared with the typical

efficiency of the battery charging chip as reported by the chip

data sheet. Figure 6(c) plots this efficiency under different

charging load conditions. We observe that our solution has

very high efficiency at light loads and the charging efficiency

reaches � 94% at high charging currents.

Next we evaluate the charging current accuracy. Fig-

ure 6(d) shows the error of the measured charging current

vs the charging current set by the microcontroller for one

of the batteries. We observe that, even under low charging

currents requiring fine-grain control, the error remains at or

below 0.5%.

We developed an SDB emulator to not only facilitate OS

researchers to easily conduct experiments but also to obtain

repeatable experiments that helped us in debugging SDB

policies without damaging real batteries.

222

Open Circuit
Potential

Internal
Resistance

Concentration
Resistance

Plate
Capacitance

Current

AA B

(a) Battery Model

2.7
2.9
3.1
3.3
3.5
3.7
3.9
4.1
4.3

0 10 20 30 40 50 60 70 80 90 100

O
pe

n
Ci

rc
ui

t P
ot

en
tia

l (
Vo

lts
)

State of Charge (%)

Battery 1 Battery 2 Battery 3 Battery 4 Battery 5

(b) Open Circuit Potential

0.01

0.10

1.00

10.00

0 10 20 30 40 50 60 70 80 90 100

Re
sis

ta
nc

e
(O

hm
s)

State of Charge (%)

Battery 1 Battery 2 Battery 3 Battery 4
Battery 5 Battery 6 Battery 7 Battery 8

(c) Internal Resistance

Figure 8. Battery Simulator: (a) Battery modeled with four variables that are learned using experimentation: Open circuit

potential, internal resistance, concentration resistance and plate capacitance. This model allows us to conduct experiments in

a scalable manner. (b) The open circuit potential of a battery increases with the state of charge (amount of energy left) of the

battery. (c) The internal resistance of a battery decreases with the state of charge.

Maccor 4200
Cycler

Arbin BT-2000
Cycler

Figure 9. Battery testers used for modeling 15 different

state-of-the-art batteries developed for usage in mobile de-

vices.

4.3 SDB Emulator
We build a multi-battery emulator to evaluate the benefits

from SDB. We emulate several kinds of batteries’ behavior

including their charging and discharging characteristics. We

build a model for batteries based on Thevenin’s Model as

built by other battery researchers [8, 9, 12, 16, 19] to sim-

ulate batteries used in production devices. The simplified

Thevenin model is reproduced in Figure 8(a). The model has

four parameters: open circuit potential, internal resistance,

concentration resistance and plate capacitance.

The open circuit potential of a battery is the voltage

across the terminals of the battery when no load is applied.

It increases with the amount of energy left in a given battery.

Figure 8(b) plots the open circuit potential of a few batteries

as the energy left in them increases.

The internal resistance of a battery is the resistance across

the terminals of the battery when a load is applied. It de-

creases with the amount of energy left in a given battery.

Figure 8(c) plots the resistance of a few batteries as the en-

ergy left in the them increases.

The concentration resistance and the plate capacitance of

a battery are fixed values for a given battery. We measure

the open circuit potential, internal resistance, concentration

resistance and the plate capacitance for several kinds of

batteries. We use the industry standard Arbin BT-2000 [3]

and Maccor 4200 [27] battery cycling and testing hardware

2.8

3.3

3.8

4.3

0 0.2 0.4 0.6 0.8 1
Te

rm
in

al
 V

ol
ta

ge
 (V

)
State of Charge

0.2A Experiment 0.5A Experiment 0.7A Experiment
0.2A Model 0.5A Model 0.7A Model

Figure 10. Validating the model against battery testing

hardware reveals that our model is 97.5% accurate.

(shown in Figure 9) for measuring the battery properties.

These systems allow us to send a configurable amount of

power in and out of the batteries and accurately measure

the open circuit potential, internal resistance, concentration

resistance and the plate capacitance at fine time scales.

The model takes the initial SoC, OCP vs SoC, resistance

vs SoC, concentration resistance, and plate capacitance to

emulate a battery. At each time step, based on the SoC, it

estimates OCP and resistance. Using the updated values, it

calculates the values for the SoC after the time step.

We build the battery model using a few batteries and

validate the models against other batteries of the same type

whose data is extracted using the testing hardware shown

in Figure 9. The validation results for one of the batteries

is shown in Figure 10. We measure the terminal voltage

using the battery testing hardware when various currents are

applied and validate the actual values against the model’s

estimations of the terminal voltage. The terminal voltage is

the voltage across points A and B in Figure 8(a). The results

show that our model is accurate to 97.5%. We modeled 15

batteries in total: Two of Type 4, two of Type 3, eight of Type

2 and 3 more of other types (refer to Figure 1(a)).

We emulate the SDB hardware using the battery emula-

tors. We implement a simple software layer that takes the in-

put power requirement and splits it across a given number of

batteries according to the power policies set by an OS. The

model and the SDB emulator are integrated into the OS (for

devices instrumented with power meters) using 4,800 lines

of code across modules written in C#, Python and Matlab.

223

500

520

540

560

580

600

0% 50% 100%

En
er

gy
 D

en
sit

y
(W

h/
L)

Battery Configuration (% of fast-
charging battery by capacity)

(a) Energy Density Comparison

0

20

40

60

80

100

120

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Ch
ar

gi
ng

 T
im

e
(m

in
)

% Charged

Traditional Battery SDB Fast Charging Battery

(b) Charge Time Comparison

70

75

80

85

90

95

All Fast Charging
Battery

SDB No Fast Charging
Battery

Lo
ng

ev
ity

 (1
00

0
Cy

cl
es

)

Battery and Charging Configuration

(c) Longevity Comparison

Figure 11. Energy density vs charge speed vs longevity tradeoff: (a) Energy density decreases as the proportion of fast-

charging battery capacity increases. (b) Charge time behavior with varying charging speeds as the proportion of fast-charging

battery increases. (c) SDB presents a middle ground between the extremes provided by pure high-density or pure fast-charging

batteries.

We focus on three hardware platforms: a tablet, a phone

and a watch. The tablet is a “2-in-1” development device

with Intel Core i5 CPU, 4GB DRAM, 128GB SSD, 12 inch

display. The phone is a Qualcomm development device with

Snapdragon 800 chipset, 1GB DRAM, 4 inch display. The

watch is a Qualcomm Snapdragon 200 development board

with hardware similar to several smart-watches [36, 37].

These devices are instrumented to obtain fine grained (100

Hz) power-draw measurements. The power-draw is then fed

into the emulator to calculate the energy drawn from the

batteries.

5. SDB Applications
In this section we describe three scenarios that benefit from

using SDB with heterogeneous batteries. We also show how

SDB policies can be customized for the different scenarios,

and demonstrate the benefits of integrating future workload

knowledge in the SDB system.

5.1 Adopting High Power-Density Batteries
High power-density batteries reduce charging times. Com-

pared to the traditional Li-ion batteries, they also provide

higher instantaneous power to CPUs, which can then dy-

namically increase frequency and reduce latency for appli-

cations. However, their efficiency and longevity decreases

as power increases. Therefore these characteristics must be

dynamically balanced via SDB to meet user expectations.

Charging Behavior: The amount of time a device takes

to charge affects its usability. A device that takes several

hours to charge fully is less usable. Likewise, a device that

needs to be charged every few hours is not useful. Batteries

have to be designed such that they last through the day for

typical use yet support fast charging. From a chemistry point

of view, energy density (both volumetric and gravimetric)

is in a tussle with power density. This means that batteries

that are able to pack more joules in a given weight/volume

charge less quickly, and vice versa. This leaves device de-

signers with three incompatible scenarios: Get as much en-

ergy capacity as possible and not offer state-of-the-art charg-

ing speeds, or offer great charging speeds albeit at lesser ca-

pacity, or meet capacity and charging speed goals but in-

crease the volume and/or weight of the battery.

SDB can offer several attractive tradeoffs between these

three extremes by allowing device designers to combine

a fast-charging battery with a high energy-density battery.

Consider a device that is constrained by volume, such a

device can dedicate half of its capacity budget to a fast-

charging battery and another half to a high energy-density

battery. This allows the device to attain the following trade-

off: Obtain close to 50% of charge really quickly yet lose

only a small portion of energy capacity.

We demonstrate how an OS can exploit tradeoffs between

longevity, energy capacity and charging speeds that SDB

enables. We measure longevity as the capacity of the battery

after a given cycle count compared to the original capacity.

For example, a battery that loses 30% of its capacity after

1,000 cycles has a longevity score of 70 after 1000 cycles.

The cycle count increases each time the battery is charged

to more than 80% (cumulative) of current energy capacity.

For example, if a user charges the battery to 50% and drains

it to 0%, the cumulative charge counter is set to 50. Later

when the user charges the battery again beyond 30%, the

cumulative charge counter is increased to 80, the cycle count

is incremented and the cumulative charge counter is set to

zero until the next time the device is charged. Each time

the battery reaches 100% capacity, the total energy that it

absorbed is noted as its current capacity. Longevity is an

important metric for device designers, since it is typically

included in the device’s warranty.

Charging speed, measured in minutes, is the time it takes

a battery to go from 0% SoC to a given capacity. For exam-

ple, if a battery takes 100 minutes to charge from 0 to 50%

(of original capacity) then its charging speed is given as 100

minutes for 50%.

We showcase the benefits of SDB using a simple setup, in

which we meet the total capacity requirement of the device,

224

of 8000 mAh, using 0%, 50%, and 100% from a high energy

density battery. So, the first case is two cells of the high en-

ergy density battery, the third is two cells of only the high

power density battery, and the second is a mix of both. The

energy density of several high energy-density batteries we

benchmarked is between 590–600 Wh/l. The energy density

of the high power-density batteries we benchmarked is be-

tween 530–540 Wh/l. However, these batteries are prone to

expand in size when charged with high currents. Therefore,

the effective energy density is between 500–510 Wh/l. This

allows the 50% configuration to have an effective energy

density between 545–555 Wh/l as shown in Figure 11(a).

Through Figure 11 we highlight the compromises when

picking homogeneous batteries, and show that SDB can

help. We pick the charging parameter for the SDB Policy

to charge the batteries as quickly as possible. Figure 11(b)

shows the charging speeds for several capacity targets. The

results show that the SDB enabled 50% mechanism allows

device designers to achieve an attractive tradeoff: By losing

less than 7% energy capacity, a device can obtain 40% of

the charge in three times less duration compared to a tra-

ditional no fast charging battery setting. Users constrained

by charging speeds typically also have a time deadline. For

example, a user getting on an airplane would like to get as

much charge as quickly as possible in short span may not be

able to charge the battery to a 100% anyway and therefore

this makes it an attractive tradeoff to have.

Figure 11(c) shows longevity of the three configurations

after 1000 cycles. Here again, it is clear that SDB presents

a middle-ground between losing only 10% of capacity after

1000 cycles with slow charging speeds vs. losing close to

22% of capacity for 100% fast charging batteries [34].

Discharging Behavior: Modern Intel CPUs (both Atom

and Core series) are capable of automatically overclocking

on the basis of power supply and temperature restrictions to

reduce the latency of computations. However, batteries that

are not capable of supplying high power for long duration

restrict the amount of time an Intel CPU can go into turbo

mode, and this can affect interactive and latency sensitive

applications. Equipping a device with a battery that has

higher power capabilities can unlock higher frequencies for

longer duration of time.

Modern Intel CPUs have three active power levels: Long

term system limit, burst limit and battery protection limit [24].

The long term system limit is the power level that is main-

tained during regular usage. However, short bursts (up to

three minutes) of higher power limit allow the CPU to reach

higher frequencies for better performance. The three minute

limit is imposed to avoid overheating. However, even higher

power can be used for higher performance. The CPU goes

into this power level only for a few milliseconds every sec-

ond to avoid damaging batteries that are not designed to

supply high power for long duration – traditional Li-ion bat-

tery for example. We propose augmenting the traditional

0.00

0.50

1.00

1.50

2.00

Network
Bottlenecked

CPU/GPU
Bottlenecked

Latency Comparison
Low Power
Medium Power
High Power

0.00

0.50

1.00

1.50

2.00

Network
Bottlenecked

CPU/GPU
Bottlenecked

Energy Comparison

Figure 12. Comparing performance priority levels. Each

priority level provides a different kind of latency vs. energy

tradeoff for different kinds of applications. This creates an

opportunity for a workload-aware OS to match priority lev-

els to tasks to obtain the best possible benefits.

Li-ion battery with a high power-density battery to sup-

port increased amounts of time spent in the highest power

level to reduce latency for certain tasks. The parameter de-

sign is again straightforward in this case. As the value in-

creases, the power manager first informs the runtime of

higher power requirements and then subsequently informs

the CPU firmware of higher power availability.

However, higher frequencies may not always benefit ap-

plication performance. A fixed parameter value would not be

ideal for all situations. Consider these two extreme users for

example: (1) A user who mostly uses network facing appli-

cations like email, browsing, social networking, audio and

video calls and (2) A user who extensively uses the local

CPU and GPU resources for gaming and development. Lat-

est 2-in-1 tablet/laptops strive to be unified devices that suits

both such users.

We compare three parameter values for these users: low,

medium and high. In the low level, the high power-density

battery is disabled and the CPU is informed of the decreased

power capacity. Medium level is one where both batteries are

enabled but the CPU is allowed to draw the same amount

of peak power from both batteries – which is twice the

peak power of the high energy-density battery. High priority

level is one where the CPU is allowed to draw maximum

possible power from both the batteries. We calculate latency

and energy benefits of running the two user profiles at these

three priority levels and plot the results in Figure 12

Networked bottlenecked applications’ energy consump-

tion increases when the Turbo capabilities of a CPU increase

without noticeable latency benefits. We find that the energy

required for a network bottlenecked workload increases by

up to 20.6% with no noticeable reduction in latency for

higher parameter values. Extra energy is used by the CPU

for entering higher turbo frequencies when the task is bot-

tlenecked by network and also because of the higher losses

in the battery because of higher power draw. However, in-

creased Turbo capability from the high power-density bat-

tery does lead to latency benefits for computationally bottle-

necked tasks.

225

We find that the PassMark and 3DMark benchmarks ob-

tain up to 26% better scores on individual tests (integer math,

floating math, rendering, fractals and GPU computations). A

fixed parameter value is therefore not a good solution. The

operating system must dynamically increase the value for

compute bottlenecked applications to improve latency and

reduce the value for network bottlenecked tasks for energy

savings.

5.2 Adopting Flexible Batteries
Flexibility and bendability are important structural proper-

ties for wearable devices, e.g. a watch-strap that is flexible

and bendable tends to be easier to wear. Coincidentally, there

are a few emerging battery chemistries that enable bendabil-

ity. The bendability, unfortunately, comes at the cost of other

battery properties. Such batteries use a solid (rubber-like)

electrolyte in place of a traditional liquid (polymer) elec-

trolyte. Unfortunately, the solid (elastic) state of the elec-

trolyte increases the resistance for the Li-ions and there-

fore, such batteries have higher internal losses. Several pro-

totype bendable batteries we tested are excellent at handling

low power workloads but often are very inefficient for high

power workloads.

SDB can enable a scenario where a small traditional Li-

ion battery in smart-watches is augmented with bendable

batteries. This helps design better wearables that utilize the

strap space to increase capacity but are still able to execute

high power workloads like GPS tracking while running and

cycling. The reduction in the size of the rigid Li-ion battery

also allows for the design of a less bulky watch body.

The bendability of the battery in the strap is a boon,

but its low efficiency is a bane that has to be intelligently

managed to maximize effective battery life of the device. It

is important to preserve energy in the efficient battery for

times when the user is expected to perform power-intensive

tasks. For example, the user may exercise, run or bicycle

during certain times of the day, which all require high power.

Therefore, the SDB policies should preserve the efficient

battery for such times.

Since smart-watch usage will vary across users, we com-

pare two extreme parameter values to demonstrate the ben-

efits of SDB: One that minimizes instantaneous losses by

drawing appropriate amounts of power from both the batter-

ies and one that draws higher amounts of power from the

inefficient battery to conserve the efficient battery.

Figure 13 demonstrates the setting and the results. We use

a 200mAh Li-ion battery in combination with a 200mAh

bendable battery for the setting. For a typical user who

spends the entire day checking messages on his smart-watch

and goes for a run in the evening, we plot the workload

and the instantaneous losses in the batteries. We find that

the latter method minimizes the total losses and therefore

increases overall battery life by over an hour. These results

provide evidence that mobile OSes that are aware of a user’s

day to day schedule may be able to provide better battery

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 17 18 19 20 21 22 23 24

Jo
ul

e

Hour of the Day

Total energy used by the device in each hour
Policy 1: Losses with parameter designed to minimize instantaneous losses
Policy 2: Losses with parameter designed to preserve Li-ion battery

Batteries discharged
completely for Policy 2
(Hour 19.2)

Running workload
initiated (Hour 9)

Li-ion discharged
completely for
Policy 1 (Hour 9.5)

Bendable battery
discharged
completely for
Policy 1 (Hour 18)

Figure 13. Fixed priority levels are bad. Priority levels have

to be changed according to expected user schedules and

workloads.

15
17
19
21
23
25

Ba
tt

er
y

Li
fe

Im

pr
ov

em
en

t (
%

)

Workload

Figure 14. Drawing power simultaneously from internal

and external batteries is more energy efficient than depleting

the external battery for conserving and charging the internal

one.

life by setting the right parameter. On the other hand, it is

interesting to note that if the user had not gone for a run

then the first policy would have given better battery life

suggesting that the knowledge of an impending workload

can help save energy in heterogeneous battery settings.

5.3 Battery Management for 2-in-1s
2-in-1 devices are tablets that have a detachable keyboard.

Some such devices have another battery under the key-

board [40]. In such a setting, there are two batteries exposed

to the OS, often with different capacities but the same in-

ternal chemistry – traditional Li-ion. However, efficiency of

the battery in the base is less as it is used solely to charge

the battery in the tablet. Significant amount of energy is lost

in charging the internal battery with the external one, yet the

reason why device manufacturers have chosen this route is

to simplify design.

SDB via the OS can improve the battery life of a com-

bined internal and external battery by understanding user

behavior and expectations. The power drawn from an exter-

nal battery can either be used towards running the system,

for charging the main battery or both. For a user who rarely

unplugs an external battery, the better solution would be to

draw power simultaneously from both batteries as the inter-

nal losses are proportional to the square of the current (resis-

226

tive losses = I2R). Splitting the power draw across the two

batteries, therefore, reduces the internal losses and increases

the energy delivered to the system.

However, this strategy may not be ideal for a user who

mostly operates in tablet-only mode. For such users, it makes

more sense to draw as much power for as long as possible

from the external battery to handle system load and also for

charging the internal battery.

The OS sets a low parameter value for times when the

external battery is expected to be plugged in for longer

duration while high parameter values are for times when the

external battery is plugged during battery crises.

Figure 14 shows the comparison of two extreme parame-

ters for various application workloads on a development 2-

in-1 device with two equal sized traditional Li-ion batter-

ies. Results show that the parameter causing simultaneous

power draw from both batteries provides 22% more battery

life than the parameter that causes one battery to charge an-

other. However, this gain is not realizable for a user who

only keeps the base with the secondary battery plugged in for

short periods of time. The OS must, therefore, learn, predict

and adapt to user behavior to set appropriate parameters.

6. Related Work
A large body of research has investigated techniques to im-

prove the battery life of mobile devices. Prior work has fo-

cused on application specific optimizations [30, 45], system-

level frameworks for accounting [11, 14, 30–33, 35, 46,

47], system-level energy optimizations [20], network pro-

tocol optimizations, technological improvements, program-

ming language techniques, better measurement and analysis

techniques [4, 6, 7, 15, 29, 38, 42, 44]. Through SDB, we

investigate a new technique to improve battery life by lever-

aging multiple batteries, and by reducing the inefficiencies

in the source of energy of mobile devices – the battery.

Multi-cell systems where smaller cells of different sizes

and shapes are connected in series, parallel or a combination

thereof to form a larger battery are fairly common [2, 21–

23]. Modern battery management and measurement hard-

ware from Texas Instruments [41] and Maxim [28] are able

to manage such batteries using technology developed for

single-celled batteries. This is because similar cells that are

connected in series or parallel collectively behave more or

less like a larger cell. However, these techniques do not work

when the batteries are heterogeneous. SDB provides a way

to integrate and manage the diverse, heterogeneous batteries

using separate fuel gauges, and new hardware and software

to control the power flowing in and out of each battery.

Multiple battery systems where one battery is used to

charge the primary battery are fairly common [13, 25, 40].

Such situations arise in mobile systems when external bat-

tery packs are used to charge the main battery. Different bat-

tery types have been explored for electric vehicles as well.

However, existing proposals use these multiple batteries in

an either-or fashion where the vehicle is powered using only

one battery at a time. Similarly, recent research [18, 43]

has investigated the use of multiple battery types and power

sources, in different power hierarchies, to shift the peak

power demand in data centers [18, 43]. As we show in Sec-

tion 5, it is possible to get significantly more battery life by

using SDB’s technique of intelligently drawing portions of

power from each battery.

7. Discussion
Hardware vs. the OS: There are three main benefits of per-

forming policy management in the OS instead of the micro-

controller firmware. First, the OS has access to knowledge

that can help design better policies as shown in Section 5,

such as access to users’ calendar and appointments. Policies

can be better tailored to the user’s schedule. For example, if

the OS (via smart assistants such as Siri, Cortana and Google

Now) knows that user is about to board a plane then it might

make sense to charge as quickly as possible and take the

hit to longevity. Second, embedding the complexity in the

OS reduces the cost of the SDB microcontroller. Third, it is

much simpler to dynamically upgrade policies, and the ac-

companying code, in the OS instead of the microcontroller

firmware.

Cost of SDB: We believe the BoM cost and space re-

quirement of our SDB solution will not be significant. We

add parts by replacing similarly sized components, therefore

weight and volume is not a concern. The proposed charging

and discharging circuit can be integrated with a few extra

gates in a traditional PMIC. Finally, most mobile devices

have a microcontroller that performs power management.

We expand the functionality of one such controller for imple-

menting the SDB controller. As stated before, having multi-

ple homogeneous cells to form a larger battery pack [2, 21–

23] is fairly common. We propose using heterogeneous cells

instead of homogeneous ones and exposing them to the OS.

Therefore, there is no additional cost or bulk because of

SDB.

Benefits to Single Battery Systems: A few concepts of

SDB are applicable to single battery systems as well. For

example, the tradeoffs of increased turbo capabilities and

how quickly to charge (or discharge) such that the cycle

count longevity requirements are met, are useful for single

battery systems. Also, the workload-based loss reduction

mechanism is also applicable for homogeneous, multi-cell

battery packs.

8. Conclusions & Future Work
Device requirements are typically hard to meet with a single

battery since these requirements are often in conflict with

each other. We present the SDB system that allows a device

to use multiple heterogeneous batteries, and get the best of

all of them. The SDB hardware is designed to be low cost,

and provides rich functionality to the OS. The SDB APIs

227

allow an OS to dynamically route charge to, and from the

batteries based on application workload such that the overall

goals (battery life, cycle count, fast charge, etc.) are met.

We show several new scenarios that can be enabled with

SDB, and demonstrate its feasibility using a prototype, and

detailed emulations.

Moving forward, we are taking the SDB work in two

main directions. First, we are tying personal assistants like

Siri [39], Cortana [10], and Google Now [17] with SDB.

These assistants understand user behavior and the user’s

schedule and by using this information, an OS can perform

better parameter selection. For example, if the user’s profile

suggests that the user plays video games in the evening, then

it SDB could preserve a higher power-density battery for that

workload. Second, we are working on additional devices that

would benefit from this technology, such as drones, smart

glasses, and electric vehicles (EV). Each would require a

different combination of battery chemistries, and the SDB

logic might be different too. For example, an EV’s NAV sys-

tem could provide the vehicle’s route as a hint to the SDB

Runtime, which could then decide the appropriate batteries

based on traffic, hills, temperature, and other factors. Our

preliminary analysis shows that SDB might help these sys-

tems achieve tradeoffs that until now were considered to be

at odds with each other.

9. Acknowledgments
We would like to thank the anonymous SOSP reviewers

and our shepherd Luis Ceze. We would also like to thank

Bojun Huang and Parya Moinzadeh for their contributions

and fruitful discussions, and Henry Sanders, Ceceli Wil-

helmi, Mark Anderson, Johnson Apacible, Victor Bahl, Eric

Horvitz, and Bryce Hausmann for their support of this work.

References
[1] Altium Designer.

http://www.altium.com/altium-designer/
overview.

[2] Apple MacBook (2015) Battery Design.

http://www.apple.com/macbook/design/.
[3] Arbin BT-2000 Battery Testing Equipment.

http://www.arbin.com/products/battery.
[4] N. Balasubramanian, A. Balasubramanian, and A. Venkatara-

mani. Energy consumption in mobile phones: A measurement

study and implications for network applications. In Proc.
IMC’09, Chicago, Illinois, Nov. 2009.

[5] Battery Univeristy: The high-power Lithium ion.

http://batteryuniversity.com/index.php/
learn/article/the_high_power_lithium_ion.

[6] J. Bickford, H. A. Lagar-Cavilla, A. Varshavsky, V. Ganapa-

thy, and L. Iftode. Security versus Energy Tradeoffs in Host-

Based Mobile Malware Detection. In Proc. 9th ACM MobiSys,

Washington, DC, June 2011.
[7] A. Carroll and G. Heiser. An Analysis of Power Consumption

in a Smartphone. In Proc. USENIX ATC, Boston, MA, June

2010.

[8] M. Chen and G. A. Rincon-Mora. Accurate Electrical Battery

Model Capable of Predicting Runtim and IV Performance.

IEEE Trans. Energy Conversion, 21(2):504–511, 2006.
[9] C.-F. Chiasserini and R. R. Rao. Energy efficient battery man-

agement. IEEE Journal. Selected Areas in Communications,

19(7):1235–1245, 2001.
[10] Cortana Personal Assistant.

https://www.windowsphone.com/en-us/how-
to/wp8/cortana/meet-cortana?signin=true.

[11] M. Dong and L. Zhong. Self-Constructive High-Rate System

Energy Modeling for Battery-Powered Mobile Systems. In

Proc. 9th ACM MobiSys, Washington, DC, June 2011.
[12] O. Erdinc, B. Vural, and M. Uzunoglu. A dynamic lithium-

ion battery model considering the effects of temperature and

capacity fading. In Proc. IEEE International Conference on
Clean Electrical Power, Capri, Italy, June 2009.

[13] External Battery Packs.

http://www.ianker.com/External%
20Batteries/category-c1-s1.

[14] J. Flinn and M. Satyanarayanan. Energy-Aware Adaptation of

Mobile Applications. In Proc. 17th ACM SOSP, Charleston,

SC, Dec. 1999.
[15] R. Fonseca, P. Dutta, P. Levis, and I. Stoica. Quanto: Track-

ing Energy in Networked Embedded Systems. In Proc. 8th
USENIX OSDI, San Diego, CA, Dec. 2008.

[16] L. Gao, S. Liu, and R. A. Dougal. Dynamic lithium-ion bat-

tery model for system simulation. IEEE Trans. Components
and Packaging Technologies, 25(3):495–505, 2002.

[17] Google Now.

http://www.google.com/landing/now/.
[18] S. Govindan, A. Sivasubramaniam, and B. Urgaonkar. Bene-

fits and Limitations of Tapping into Stored Energy for Data-

centers. In ISCA, 2011.
[19] H. He, R. Xiong, X. Zhang, F. Sun, and J. Fan. State-

of-Charge Estimation of the Lithium-Ion Battery Using

and Adaptive Extended Kalman Filter Based on an Im-

proved Thevenin Model. IEEE Trans. Vehicular Technology,

60(4):1461–1469, 2011.
[20] B. D. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin, and

D. Watson. Informed Mobile Prefetching. In Proc. 10th ACM
Mobisys, Low Wood Bay, United Kingdom, June 2012.

[21] iFixit Galaxy Tab 2 10.1 Teardown: 25.9 Wh battery with two

cells (Step 10).

https://www.ifixit.com/Teardown/Samsung+
Galaxy+Note+10.1+Teardown/10144.

[22] iFixit iPad Air 2 Teardown: 32.9 Wh battery with cells (Step

17).

https://www.ifixit.com/Teardown/iPad+Air+
2+Teardown/30592.

[23] iFixit Surface Pro 3 Teardown: 42.4 Wh battery with four

cells (Step 13).

https://www.ifixit.com/Teardown/
Microsoft+Surface+Pro+3+Teardown/26595.

[24] Intel Active CPU Power Levels.

http://www.intel.com/content/dam/www/
public/us/en/documents/presentation/
advancing-moores-law-in-2014-
presentation.pdf.

[25] iPhone Battery Case.

http://www.mophie.com/shop/iphone-
5/juice-pack-helium-iphone-5.

228

[26] LTSpice: Linear Technologies Simulator Program with Inte-

grated Circuit Emphasis.
[27] Maccor 4200 Battery Testing Equipment.

http://www.maccor.com/Products/Model4200.
aspx.

[28] Maxim Fuel Gague for Mobile Devices.

http://para.maximintegrated.com/en/
results.mvp?fam=batt_stat&295=Fuel%
26nbsp%3BGauge&1379=ModelGauge.

[29] A. P. Miettinen and J. K. Nurminen. Energy Efficiency of

Mobile Clients in Cloud Computing. In Proc. 2nd USENIX
HotCloud, Boston, MA, June 2010.

[30] R. Mittal, A. Kansal, and R. Chandra. Empowering Develop-

ers to Estimate App Energy Consumption. In Proc. 18th ACM
MobiCom, Istanbul, Turkey, Aug. 2012.

[31] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy

spent inside my app?: Fine Grained Energy Accounting on

Smartphones. In Proc. EUROSYS, Bern, Switzerland, Apr.

2012.
[32] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang.

Fine-Grained Power Modeling for Smartphones using System

Call Tracing. In Proc. 6th ACM EUROSYS, Salzburg, Austria,

Apr. 2011.
[33] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and

O. Spatschek. Profiling Resource Usage for Mobile Appli-

cations: a Cross-layer Approach. In Proc. 9th ACM MobiSys,

Washington, DC, June 2011.
[34] Qualcomm Quick Charge.

https://www.qualcomm.com/products/
snapdragon/quick-charge.

[35] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazieres,

and N. Zeldovich. Energy Management in Mobile Devices

with Cinder Operating System. In Proc. 6th ACM EUROSYS,

Salzburg, Austria, Apr. 2011.
[36] Samsung Galaxy Gear Specs.

http://www.samsung.com/us/mobile/
wearable-tech/SM-V7000ZKAXAR.

[37] Samsung Gear Live and Gear 2.

http://www.gizmag.com/samsung-gear-live-
vs-gear-2-smartwatch-comparison/32775/.

[38] A. Shye, B. Scholbrock, and G. Memik. Into the wild: Study-

ing real user activity patterns to guide power optimizations for

mobile architectures. In Proc. 42nd IEEE MICRO, New York,

NY, Dec. 2009.
[39] Siri Personal Assistant.

https://www.apple.com/ios/siri/.
[40] Surface Power Cover.

http://www.microsoft.com/surface/en-us/
support/hardware-and-drivers/power-cover.

[41] Texas Instruments Fuel Guages for Mobile Devices.

http://www.ti.com/lsds/ti/power-
management/battery-fuel-gauge-products.
page#p1152=SingleCell&p338=Li-Ion/Li-
Polymer&p199=I2C&o4=ACTIVE&p626max=
2000;29000&p626min=100;100&p1960=&p2192=
&p2954=DSBGA.

[42] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J. P.

Signh. Who Killed My Battery: Analyzing Mobile Browser

Energy Consumption. In Proc. WWW, Lyon, France, Apr.

2012.

[43] D. Wang, C. Ren, A. Sivasubramaniam, B. Urgaonkar, and

H. Fathy. Energy storage in datacenters: what, where, and

how much? In ACM SIGMETRICS, 2012.
[44] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong,

B. Krishnamachari, and N. Sadeh-Koniecpol. A Framework

for Energy Efficient Mobile Sensing for Automatic Human

State Recognition. In Proc. 7th ACM Mobisys, Krakow,

Poland, June 2009.
[45] F. Xu, Y. Liu, T. Moscibroda, R. Chandra, L. Jin, Y. Zhang,

and Q. Li. Optimizing Background Email Sync on Smart-

phones. In Proc. 11th ACM MobiSys, Taipei, Taiwan, June

2013.
[46] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha. AppScope:

Application Energy Metering Framework for Android Smart-

phones using Kernel Activity Monitoring. In Proc. USENIX
ATC, Boston, MA, June 2012.

[47] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M.

Mao, and L. Yang. Accurate online power estimation and

automatic battery behavior based power model generation for

smartphones. In Proc. 8th IEEE/ACM/IFIP CODES+ISSS,

Taipei, Taiwan, 2010.

229

