Dejavu: Enhancing Videoconferencing with Prior Knowledge

Pan Hu, Rakesh Misra, Sachin Katti Stanford University and Uhana Inc.

Poor Quality of Videoconferencing over Wireless Links

 Low uplink bandwidth over LTE

 Conservative bandwidth utilization to maintain interactivity

Poor Quality of Videoconferencing over Wireless Links

Prior Solutions for better videoconferencing

Key Insight: visual similarities

Arbitrary videos from Youtube: few visual similarities

Videoconferencing in the same room: abundant visual similarities

Dejavu: is a system that optimizes videoconferencing performance by leveraging similarities across past and current sessions

How to Leverage the Similarities?

Dejavu: let neural network learn the similarities

How to Leverage the Similarities?

Dejavu: let neural network learn the similarities

Current System

Dejavu Offline Stage

Dejavu Online Stage

Design of Dejavu Learning Engine

NN Architecture

Convolution layers + Residual blocks

Preprocessing

- Compress videos into different quality levels with FFMPEG
- Train on shuffled small patches rather than full frame
- Convert RGB into YUV, processing on Y only to speed up inference

Performance Benchmark: PSNR Gain

- Train/validate on the first four videos and test on the last one
- Video format
 - 270p(480*270) and 540p(960*540)
- [100, 200, 300, 500, 800, 1000, 2000] kbps
 Measure Peak Signal to

Noise Ratio

Performance Benchmark: Bandwidth Saving

- Up to 30% bandwidth saving for the same PSNR
- Similar performance gain as
 developing a new
 generation of video codec

Performance Benchmark: Visual difference

Future Work

Evaluate real-world performance

- □ Collect large-scale, real-user dataset.
- Evaluate user experience that includes processing delay in real system

More efficient inference

- Exploit inter-frame similarity based on motion estimation (from codec) or reuse part of NN
- Knowledge distillation or model compression / quantization to speed up / fit in small RAM

Conclusion

□ Summary

 Dejavu leverage similarities across videoconferencing sessions to improve future video performance – caching live content!

 Similar mechanism could be applied to a wide range of video streaming apps (like Twitch / Youtube) to improve quality or reduce CDN cost!

□ Future work

Evaluate real-world performance
 More efficient inference