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ABSTRACT
Videoconferencing over the Internet routinely suffers from poor
quality as videoconferencing systems, in order to guarantee inter-
active delays which is critical to user experience, are commonly
designed to stream at conservative qualities in the face of variable
bandwidths. In this paper, we present Dejavu, a system that enables
existing videoconferencing systems to alleviate this problem. The
key insight that powers Dejavu is that recurring videoconferencing
sessions, e.g., in the same conference room or by the same person,
have a lot of visual similarities that can be encoded based on the
sender’s historical videoconferencing sessions, and shared with
the receiver in advance. Accordingly, Dejavu first learns an offline
mapping between low-quality and high-quality versions of frames
in the sender’s past videoconferencing sessions, and then applies
this mapping in real time at the receiver to convert the low-quality
frames into high-quality frames. As a result, a videoconferencing
system equipped with Dejavu can continue to stream at conser-
vative qualities to guarantee interactive delays like today, but can
now additionally enhance the video quality at the receiver. Our eval-
uation shows that Dejavu can provide a 1.3 dB increase in PSNR
for the same bandwidth consumption, or equivalently save up to
30% in bandwidth to deliver the same PSNR.

CCS CONCEPTS
• Networks → Mobile networks; • Information systems →
Multimedia streaming.

KEYWORDS
Videoconferencing; Mobile networks; Deep neural networks
ACM Reference Format:
Pan Hu, Rakesh Misra, and Sachin Katti. 2019. Dejavu: Enhancing Video-
conferencing with Prior Knowledge. In The 20th International Workshop
on Mobile Computing Systems and Applications (HotMobile ’19), February
27–28, 2019, Santa Cruz, CA, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3301293.3302373

1 INTRODUCTION
Videoconferencing over the Internet routinely suffers from poor
quality [16]. The reason is that videoconferencing systems need
to deliver interactive end-to-end delays for the best user experi-
ence, so when network bandwidths are variable, in order to still
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(a) Structural similarity (SSIM) index between different videos

(b) Sample frames from different videoconferencing sessions

(c) Sample frames from the same Youtube video stream

Figure 1: The key insight that powers Dejavu is that recur-
ring videoconferencing sessions, e.g., in the same meeting
room, are visually very similar. As (a) shows, the SSIM of
frames across recurring videoconferencing sessions (0.70-
0.75) is higher than the SSIM of even frames within the same
video session involving news (0.56), sports (0.34), gaming
(0.47) or animation (0.55). The sample frames in (b) and (c)
illustrate this insight visually.

guarantee interactive delays, the common approach is to stream
at very conservative qualities. As a result, in networks where user
bandwidths are dynamic, e.g., in mobile networks, the video quality
suffers. Most of the work in addressing this problem has focused on
designing more-efficient video encoders [6, 7] and better real-time
transport algorithms [4, 16] for videoconferencing.

In this paper, we adopt a different approach. Our guiding insight
is that recurring videoconferencing sessions, i.e., sessions that hap-
pen in the same meeting room and/or involve the same person,
have a lot of similarities in visual content across sessions. For exam-
ple, many meeting rooms use a fixed camera, so the objects in the
field of view like conference table, whiteboard etc. are largely the
same in all sessions using that camera. Similarly, personal video-
conferencing using a mobile or web camera always has the face and
features of the same person. Note that this property of videoconfer-
encing streams does not hold in general for any live or on-demand
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video stream. For example, as we show in Figure 1, frames across
multiple videoconferencing sessions in a meeting room using a
fixed camera had a significantly higher structural similarity index
(0.70-0.75) than even frames within the same live/on-demand video
streaming session involving news (0.56), sports (0.34), gaming (0.47)
or animation (0.55).

The above insight led us to the following question: if there is so
much similarity in the visual content across sessions involving the
same sender, could we learn amapping between the low-quality and
the high-quality versions for a sender based on her past sessions,
and share it with the receiver before a live session starts? If we
could, then we could use this mapping at the receiver during a live
session to up-convert the video quality in real time. As a result,
existing videoconferencing systems could deliver the best of both
worlds: they could continue to deliver interactive delays since the
streaming over the network will continue to happen at the same
qualities as today1, but now they could also deliver better qualities
as the receiver will enhance the video quality in real time. In effect,
the spare computing power at the receivers could be employed to
compensate for the conservative quality choices at the sender2.

In order to realize the above vision, we present Dejavu, a system
that can augment existing videoconferencing systems and enable
them to deliver better video qualities while continuing to deliver
the interactive delays that they do today. Dejavu shows that it
is possible to learn a quality-enhancing model or mapping based
on a sender’s historical sessions that performs well in enhancing
the video quality of future unseen sessions. Our initial evaluation
shows that Dejavu can help videoconferencing systems improve
their end-to-end PSNR by more than 1.3 dB while consuming the
same bandwidth as today, or alternatively enable them to reduce
their bandwidth consumption by 30% (thereby potentially leading
to lower delays) while delivering the same PSNR as today.

2 DESIGN
In this section, we describe how Dejavu has been designed to real-
ize the above vision. Dejavu operates in two stages, as shown in
Figure 2.
In the offline stage, Dejavu uses videos from a sender’s past video-
conferencing sessions to: (i) generate training data by re-encoding
the higher-quality frames at each resolution, e.g., 800 kbps at 540p,
to lower qualities at the same resolution, e.g., 500 kbps at 540p,
using the same encoding pipeline as the videoconferencing system,
and (ii) train a deep neural network model using Dejavu’s learning
engine that learns the mapping between the lower-quality frames
of a given resolution and their corresponding higher-quality frames,
e.g., model to convert frames at 500 kbps at 540p to frames at 800
kbps at 540p. These models are shared with the Dejavu module at
the receiver before the start of the next videoconferencing session.

1In reality, the additional processing at the receiver will add some delay, so for this to
work, a requirement is that the additional delay has to be very minimal.
2This idea of using spare receiver compute resources to offset the loss in sending
quality due to limited network bandwidths has been explored in a recent paper [18]
but in the context of on-demand video streaming; as we describe in Section 6, learning
an offline mapping for on-demand videos where the entire video content is known
in advance is very different than that for live videos where the video content whose
quality has to be enhanced is unseen and therefore not known in advance.
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Figure 2: The Dejavu system consists of two components:
an offline component that learns a quality-enhancing deep
neural network, and an online component that enhances the
quality of live videoconferencing at the receiver in real time.
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Figure 3: Dejavu’s quality-enhancing neural network con-
sists of convolutional layers and residual blocks [11]. It con-
verts a low-quality image into a high-quality image at the
same resolution.

In the online stage, the Dejavu module at the receiver applies the
pre-trained neural network models on the conventional videocon-
ferencing receiver output to up-convert the quality, e.g., from 500
kbps at 540p to 800 kbps at 540p, in real time.

2.1 Architecture of the quality-enhancing
neural network

At the heart of Dejavu is the quality-enhancing neural network
whose goal is to learn a mapping between the low-quality input
frames and the corresponding high-quality output frames. We re-
vised the neural network architecture proposed by EDSR [14] by
removing bi-cubic upsampling layers so the output has the same
dimension as input, which is also shown in Figure 3.

Dejavu’s deep neural network consists of several repetitive ResNet
[11] blocks sandwiched between two convolutional layers. Each Res-
Block consists of a convolutional layer, a rectified linear unit (ReLU)
layer, another convolutional layer and a multiply layer. There is a



4 8 12 16 20
Number of ResBlock

100

200

In
fe

re
n

ce
ti

m
e/

m
s

270p

540p

Real-time

Figure 4: Comparison of the inference speeds of the quality-
enhancing neural networks with different number of Res-
Blocks for different input resolutions.

skip connection from input to output of the ResBlock that helps in
avoiding the vanishing gradient problem [11].

Instead of designing a neural network that works on the entire
input image, we instead design it to work on smaller patches of the
image. For example, instead of a neural network that works on a
single 960×540 RGB image which would require 1.56M parameters,
we instead design a neural network that can work on 144 80 × 45
patches; each neural network then has only 10.8k parameters. The
reduced input size allows us to use deeper neural networks as well
as more mini-batches for stable training.

2.2 Inference speed
A key challenge that Dejavu has to solve is in speeding up the
inference of the deep neural network so it can be scored in real
time, even with less powerful GPUs.

Figure 4 shows a comparison of inference speeds as a function
of the number of ResBlocks at different input resolutions, using a
high-end, NVIDIA Tesla P100 from Google Cloud. Assuming the
video frame rate is 30 fps, we find that only very shallow networks
can meet the real-time deadline of 33 ms, shown in red in the figure.

Dejavu applies two techniques to speed up inference:
Train/infer on Y (luminance) channel only: It is well known
that human eyes are most sensitive to the luminance component
of an image, and less sensitive to its colors. Therefore, we convert
an RGB image into its equivalent YCbCr representation, where Y is
the luminance component, and Cb and Cr are the two chrominance
components. We found that by training/inferring a neural network
on only the Y channel, while keeping Cb and Cr channels the same,
we can still achieve significant gains in visual quality while taking
only one third of the time for inference (the cost of converting RGB
into YCbCr is minimal).
Patch scoring network: Dejavu’s quality-enhancing neural net-
work does not achieve the same improvement in visual quality on
all patches. It is possible to improve the quality more on patches
with a lot of edges or complex details, rather than patches with, for
example, a white wall. So instead of scoring the quality-enhancing
neural network on all patches, Dejavu has a patch-scoring network
that predicts possible gains in quality, measured in peak SNR, as
shown in Figure 5. During the inference process, the patch-scoring
network ranks the patches according to their predicted gains in

...

Fu
lly

 c
on

ne
ct

ed

C
on

v

N Channels

Im
ag

e 
he

ig
ht

Im
ag

e 

widt
h

N repetitive Pool+Conv

In Out

P
oo

l

C
on

v

P
oo

l

C
on

v

PSNR 
Gain

Figure 5: Patch-scoring neural network consists of shallow
layers of max-pooling and convolutional blocks. It outputs
a single floating number representing the PSNR gain if the
quality-enhancing network were to be applied on the input
patch.

Figure 6: Samples images from the training dataset for De-
javu: five colleagues participating in mock interviews in the
same conference room.

quality. Dejavu selects the top k patches according to the available
compute resources so as to meet the real-time requirement.

3 IMPLEMENTATION
We implement the neural network with TensorFlow [1] and Python
3. All the training and inference are done in Google Cloud for now.
The trained neural network model is typically less than 870kB given
32 residual blocks and 32 features per each block, which can be sent
to the receiver easily.
Video dataset. Since there is no widely-acknowledged dataset for
videoconferencing, we created our own videoconferencing dataset
by requesting five people to do mock interviews with us in our
meeting room on the same day. Figure 6 shows some sample images
from this data set. The camera was pointed towards a fixed direction
to simulate conference room settings. We used a smartphone with
mini-tripod to capture 1080p@60fps video.
Training dataset: Each video is about three minutes in length. All
the videos were converted into VP9 format 1. In videoconferenc-
ing, the video stream can be encoded at any bitrate ranging from
between tens of kbps to several Mbps. We chose 7 representative
bitrates in our experiment, including: 100, 200, 300, 500, 800, 1000,
2000 kbps. We compressed each video into different bitrate levels
using FFmpeg, and used OpenCV [2] to extract compressed frames
for training. To reduce the size of dataset, we reduced the frame
rate from 60 fps to 2 fps. So the total number of frames is about 5
videos * 180 seconds * 2 fps * 8 levels = 12600. We then converted
each frame into lossless png format to facilitate data loading.

The videos used to calculated similarity were downloaded from
YouTube, including a CNN clip (news), a 2018 FIFA clip (sports), a
1We chose VP9 over H265 as VP9 is free and benchmarks show that VP9 has similar
performance [9].
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Figure 7: PSNR gain of Dejavu for inputs at two resolutions:
540p (blue) and 270p (orange). Each marker represents an
encoding bitrate ranging from 100 kbps to 2000 kbps.

Dota v2 clip (gaming) and a Family Guys clip (animation), all of
which are top-ranking 1080p HD videos.

4 EVALUATION
In this section we present some preliminary evaluation results for
Dejavu. We aim to answer the following questions:
• What performance gains can Dejavu provide and how do
we interpret the results?
• How does video similarity affect the performance of the
quality-enhancing neural network?

We use PSNR 1 as the quality metric to quantify the performance
gain of the quality-enhancing network. We train on four out of the
five videos in the dataset and test on the fifth one. The results for
270p and 540p videoconferencing streams are shown in Figure 7,
where x axis is the logarithm of the file size in MB and y axis is
the PSNR in dB. Each marker indicates an encoding bitrate level in
[100, 200, 300, 500, 800, 1000, 2000] kbps.

The file sizes grow monotonically as the encoding bitrates in-
crease. As the figure shows, the quality-enhancing neural network
is able to improve the PSNR by up to 1.3 dB for 540p and up to 1.1
dB for 270p videoconferencing streams at low to medium encoding
bitrates. This gain is substantial as it is comparable to developing a
new generation of video codec [8] which requires years of work.
The gains diminish as the file sizes / encoding bitrates increase, as
the room for improvement decreases.

Figure 8 shows sample pictures of the input/output of the neural
network, and the corresponding ground truth. The PSNR and SSIM
gains aside, we can see that the details are clearly refined in the
output of the neural network with much less compression artifacts.
The drawing on the white board is also much more readable. In
Figure 9, we plot a differential error map that shows the boost in

1 PSNR = 48.13 − 10 × log10 (MSE ) dB for 8 bits per sample image where MSE is
mean squared error between the input and output image.

image quality due to Dejavu in different parts of the image 2. The
interesting observation is that most of the gain (shown in purple)
occurs around edges.

We provide an alternative way to understand the performance
gain by translating the result from Figure 7 into potential bandwidth
savings, as shown in Figure 10. The figure shows that we can save
more than 30% of the bandwidth to deliver video at the same quality
as the original 540p@500kbps stream, while we can also achieve
more than 25% bandwidth saving at 270p.

Another question we want to answer is: what is the performance
gain if we train on a general video dataset and use the model to
enhance videoconferencing sessions? The result is shown in Fig-
ure 11: the quality-enhancing neural network trained on a general
video data set cannot bring significant PSNR gain (<0.1dB), and is
significantly worse than the neural network trained on the video-
conferencing dataset. The result is also in accordance with the
similarity result shown in Figure 1 at the beginning of the paper,
indicating that it is hard to improve the video quality if there is less
similarity between the train and the test datasets.

5 FUTUREWORK
While the above results prove the potential of Dejavu in improving
the visual quality of videoconferencing streams, a number of open
items still need to be completed in order to make Dejavu ready for
deploying in practical videoconferencing systems.

1. Evaluating the performance of Dejavu in the wild: The
evaluation in this paper was performed for a simple, same-room
different-person scenario. There is need for a larger-scale evaluation
that collects data frommore videoconferencing scenarios, including
multiple persons in the same meeting room, same person but at
different locations on different days, as well as scenarios that use
front-facing camera on the go. Such data is necessary to better
evaluate the real-world performance of Dejavu.

2. Integrating Dejavu into a videoconferencing applica-
tion and measuring user experience: Our initial evaluation fo-
cused only on improving the video quality without taking into
account the additional processing delay incurred at the receiver.
However, optimizing delay and jitter are crucial for a good user ex-
perience with videoconferencing. Therefore, there might be a need
to optimize the algorithm that selects video sending rates in video-
conferencing frameworks like WebRTC in order to compensate for
the additional processing at the receiver.

3. Supporting mobile / embedded devices with resource
constraints: We used powerful GPUs in our current evaluation.
However, not every videoconferencing device, especially mobile
phones and embedded devices, can afford such a computational
cost. Although sometimes it is possible to perform the computations
in the cloud using a relay server if the receiver has a good down-
link, relaying incurs additional delay as well as additional costs for
the service provider. Therefore, there is a need to optimize Dejavu
for devices with compute constraints. Model compression [10] and
knowledge distillation [12] are two popular methods for reducing
computation overhead: model compression compresses neural net-
works via pruning less important connections as well as quantizes

2We clip the data range from [-79, 61] to [-20, 20] for better color contrast.



(a) Top: input to Dejavu ( 36.17 dB PSNR, 0.9445 SSIM);
middle: output of Dejavu ( 37.53 dB PSNR, 0.9617 SSIM);

bottom: reference (ground-truth) frame.

(b) Zoomed in versions of the blue and the purple boxes in (a).
Left to right: input, output, reference (ground truth).

Figure 8: Illustration of Dejavu’s quality enhancement

weights so we can use less bits per weight; knowledge distillation in-
volves training a smaller "student" model that mimics the behavior
of the larger "teacher" model.
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Figure 9: Error map showing how Dejavu improves quality
over different areas of a frame, computed as a pixel-wise sub-
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PSNR gains of Dejavu for different encoding bitrates and in-
put resolutions.

4. Exploiting inter-frame similarity: Dejavu currently pro-
cesses every frame at the receiver using the same neural network;
however there is an opportunity to design separate neural networks
for key frames and predicted frames. Predicted frames are more
common but carry less information, therefore it might be possible to
enhance their quality using a smaller (shallower and less wide) neu-
ral network, whereas the current full-scale neural network could
enhance only the key frames. As a result, the average run time of
Dejavu at the receiver could be significantly reduced.

6 RELATEDWORK
Dejavu’s quality-enhancing neural network is built upon prior
works in video super resolution [3, 15] and image super resolu-
tion [5, 13, 14]. Dejavu’s novel contribution is to adapt these prior
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Figure 11: Comparison of PSNR gain when the quality-
enhancing model is trained on general Youtube videos. The
gains in PSNR are negligible (< 0.1 dB in most cases).

neural networks to exploit the unique properties of videoconfer-
encing, and build a system that shows how such neural networks
can be used in an end-to-end application like videoconferencing.

Dejavu shares similarities with NAS [17, 18] that explored a
similar quality-enhancing problem but in the context of on-demand
video streaming. Dejavu and NAS are similar in the sense that both
aim to learn a mapping between the low-quality and the high-
quality versions of video streams, and both aim to use the spare
compute resources at the receiver to enhance the video quality at
run time. However, Dejavu differs in two significant respects:

(i) While NAS needs to learn amodel that overfits to this mapping
for a given and known video stream, Dejavu needs to learn a model
that predicts this mapping for future unseen video streams. This is
because in on-demand video streaming, the video stream whose
quality has to be enhanced is entirely known in advance, where
as in live videoconferencing, the quality enhancement has to be
performed on video streams that are unseen until run time. Dejavu
is therefore uniquely designed to solve a learning problem that is
significantly different than the one solved by NAS.

(ii) While NAS aims to increase the resolution of a video stream,
Dejavu aims to increase the effective encoding rate while retaining the
same resolution. This is based on the insight that given a bandwidth
target, in videoconferencing, it is usually better to send at a higher
resolution using lesser bits per pixel than at a lower resolution
using more bits per pixel. Therefore, in the context of videocon-
ferencing, it is almost always more useful to be able to increase
the effective bits per pixel, unlike in traditional live or on-demand
video streaming where the choice largely depends on the nature of
content in the video stream.

There have been works on jointly controlling video codec and
transport protocols [6] that aim to improve the quality of real-time
streaming. While Dejavu addresses the same problem, it adopts a
different approach based on taking advantage of the similarities
across recurring videoconferencing sessions.

7 CONCLUSION
In this paper, we discussed the design and evaluation of Dejavu, a
system that enhances videoconferencing quality by extracting prior
knowledge from historical sessions. We believe that Dejavu has
great potential to improve existing videoconferencing systems as
initial evaluation shows up to 1.3dB PSNR gain, or equivalently 30%
savings in bandwidth. Our ongoing work is focused on addressing
the open items in Section 5 to make Dejavu ready for deployment
in practical large-scale videoconferencing systems.
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